Random mutagenesis screen shows that Phytophthora capsici CRN83_152‐mediated cell death is not required for its virulence function(s)
Summary With the increasing availability of plant pathogen genomes, secreted proteins that aid infection (effectors) have emerged as key factors that help to govern plant–microbe interactions. The conserved CRN (CRinkling and Necrosis) effector family was first described in oomycetes by their capaci...
Gespeichert in:
Veröffentlicht in: | Molecular plant pathology 2018-05, Vol.19 (5), p.1114-1126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
With the increasing availability of plant pathogen genomes, secreted proteins that aid infection (effectors) have emerged as key factors that help to govern plant–microbe interactions. The conserved CRN (CRinkling and Necrosis) effector family was first described in oomycetes by their capacity to induce host cell death. Despite recent advances towards the elucidation of CRN virulence functions, the relevance of CRN‐induced cell death remains unclear. In planta over‐expression of PcCRN83_152, a CRN effector from Phytophthora capsici, causes host cell death and boosts P. capsici virulence. We used these features to ask whether PcCRN83_152‐induced cell death is linked to its virulence function. By randomly mutating this effector, we generated PcCRN83_152 variants with no cell death (NCD) phenotypes, which were subsequently tested for activity towards enhanced virulence. We showed that a subset of PcCRN83_152 NCD variants retained their ability to boost P. capsici virulence. Moreover, NCD variants were shown to have a suppressive effect on PcCRN83_152‐mediated cell death. Our work shows that PcCRN83_152‐induced cell death and virulence function can be separated. Moreover, if these findings hold true for other cell death‐inducing CRN effectors, this work, in turn, will provide a framework for studies aimed at unveiling the virulence functions of these effectors. |
---|---|
ISSN: | 1464-6722 1364-3703 |
DOI: | 10.1111/mpp.12590 |