A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis

Dynemicin A is a member of a subfamily of enediyne antitumour antibiotics characterized by a 10-membered carbocycle fused to an anthraquinone, both of polyketide origin. Sequencing of the dynemicin biosynthetic gene cluster in Micromonospora chersina previously identified an enediyne polyketide synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2018-02, Vol.10 (2), p.231-236
Hauptverfasser: Cohen, Douglas R., Townsend, Craig A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynemicin A is a member of a subfamily of enediyne antitumour antibiotics characterized by a 10-membered carbocycle fused to an anthraquinone, both of polyketide origin. Sequencing of the dynemicin biosynthetic gene cluster in Micromonospora chersina previously identified an enediyne polyketide synthase (PKS), but no anthraquinone PKS, suggesting gene(s) for biosynthesis of the latter were distant from the core dynemicin cluster. To identify these gene(s), we sequenced and analysed the genome of M. chersina . Sequencing produced a short list of putative PKS candidates, yet CRISPR-Cas9 mutants of each locus retained dynemicin production. Subsequently, deletion of two cytochromes P450 in the dynemicin cluster suggested that the dynemicin enediyne PKS, DynE8, may biosynthesize the anthraquinone. Together with 18 O-labelling studies, we now present evidence that DynE8 produces the core scaffolds of both the enediyne and anthraquinone, and provide a working model to account for their formation from the programmed octaketide of the enediyne PKS. The anthraquinone and enediyne halves of the antitumor antibiotic dynemicin A were previously thought to be assembled by two separate polyketide synthases (PKS). Now, a single polyketide synthase has been proposed to be responsible for their production, and a working model for their biosynthesis from a common octaketide intermediate has been suggested.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.2876