Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase
Novel therapeutic means against infections are urgently needed due to the emergence of drug-resistant . We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in . We engineered a fusion of a Cas9 nickase (Ca...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2018-03, Vol.9 (12), p.3248-3253 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel therapeutic means against
infections are urgently needed due to the emergence of drug-resistant
. We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in
. We engineered a fusion of a Cas9 nickase (Cas9D10A) and a cytidine deaminase (APOBEC1) that can be guided to a target genomic locus for gene inactivation
generating a premature stop codon. The pnCasSA-BEC system nicks the non-edited strand of the genomic DNA, directly catalyzes the conversion of cytidine (C) to uridine (U), and relies on DNA replication to achieve C → T (G → A) conversion without using donor repair templates. The development of the base-editing system will dramatically accelerate drug-target exploration in
and provides critical insights into the development of base-editing tools in other microbes. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/c8sc00637g |