Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase

Novel therapeutic means against infections are urgently needed due to the emergence of drug-resistant . We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in . We engineered a fusion of a Cas9 nickase (Ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2018-03, Vol.9 (12), p.3248-3253
Hauptverfasser: Gu, Tongnian, Zhao, Siqi, Pi, Yishuang, Chen, Weizhong, Chen, Chuanyuan, Liu, Qian, Li, Min, Han, Dali, Ji, Quanjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Novel therapeutic means against infections are urgently needed due to the emergence of drug-resistant . We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in . We engineered a fusion of a Cas9 nickase (Cas9D10A) and a cytidine deaminase (APOBEC1) that can be guided to a target genomic locus for gene inactivation generating a premature stop codon. The pnCasSA-BEC system nicks the non-edited strand of the genomic DNA, directly catalyzes the conversion of cytidine (C) to uridine (U), and relies on DNA replication to achieve C → T (G → A) conversion without using donor repair templates. The development of the base-editing system will dramatically accelerate drug-target exploration in and provides critical insights into the development of base-editing tools in other microbes.
ISSN:2041-6520
2041-6539
DOI:10.1039/c8sc00637g