Paper-Based Surface-Enhanced Raman Scattering Lateral Flow Strip for Detection of Neuron-Specific Enolase in Blood Plasma

An inexpensive and disposable paper-based lateral flow strip (PLFS) has been developed as an immunoassay, in which surface-enhanced Raman scattering (SERS) is utilized for sensing signal transduction. The Au nanostar@Raman Reporter@silica sandwich nanoparticles are developed as the SERS probes, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-09, Vol.89 (18), p.10104-10110
Hauptverfasser: Gao, Xuefei, Zheng, Peng, Kasani, Sujan, Wu, Steven, Yang, Feng, Lewis, Sara, Nayeem, Sara, Engler-Chiurazzi, Elizabeth B, Wigginton, Jane G, Simpkins, James W, Wu, Nianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An inexpensive and disposable paper-based lateral flow strip (PLFS) has been developed as an immunoassay, in which surface-enhanced Raman scattering (SERS) is utilized for sensing signal transduction. The Au nanostar@Raman Reporter@silica sandwich nanoparticles are developed as the SERS probes, which is the key to the high sensitivity of the device. Compared with a colorimetric PLFS, the SERS-PLFS exhibits superior performance in terms of sensitivity and limit of detection (LOD) in a blood plasma-containing sample matrix. In addition, the SERS-PLFS has been successfully used for detection of neuron-specific enolase (NSE), a traumatic brain injury (TBI) protein biomarker, in diluted blood plasma samples, achieving a LOD of 0.86 ng/mL. Moreover, the SERS-PLFS was successfully employed to measure the NSE level in clinical blood plasma samples taken from deidentified TBI patients. This work demonstrates that the SERS-PLFS has great potential in assisting screening of TBI patients in the point-of-care setting.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.7b03015