Network Analysis to Risk Stratify Patients With Exercise Intolerance

RATIONALE:Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2018-03, Vol.122 (6), p.864-876
Hauptverfasser: Oldham, William M, Oliveira, Rudolf K.F, Wang, Rui-Sheng, Opotowsky, Alexander R, Rubins, David M, Hainer, Jon, Wertheim, Bradley M, Alba, George A, Choudhary, Gaurav, Tornyos, Adrienn, MacRae, Calum A, Loscalzo, Joseph, Leopold, Jane A, Waxman, Aaron B, Olschewski, Horst, Kovacs, Gabor, Systrom, David M, Maron, Bradley A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RATIONALE:Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically, but are lacking. OBJECTIVE:Use unbiased analyses to identify variables that correspond to clinical risk in patients with exercise intolerance. METHODS AND RESULTS:Data from 738 consecutive patients referred for invasive cardiopulmonary exercise testing at a single center (2011–2015) were analyzed retrospectively (derivation cohort). A correlation network of invasive cardiopulmonary exercise testing parameters was assembled using |r|>0.5. From an exercise network of 39 variables (ie, nodes) and 98 correlations (ie, edges) corresponding to P
ISSN:0009-7330
1524-4571
DOI:10.1161/CIRCRESAHA.117.312482