Network Analysis to Risk Stratify Patients With Exercise Intolerance
RATIONALE:Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically,...
Gespeichert in:
Veröffentlicht in: | Circulation research 2018-03, Vol.122 (6), p.864-876 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RATIONALE:Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically, but are lacking.
OBJECTIVE:Use unbiased analyses to identify variables that correspond to clinical risk in patients with exercise intolerance.
METHODS AND RESULTS:Data from 738 consecutive patients referred for invasive cardiopulmonary exercise testing at a single center (2011–2015) were analyzed retrospectively (derivation cohort). A correlation network of invasive cardiopulmonary exercise testing parameters was assembled using |r|>0.5. From an exercise network of 39 variables (ie, nodes) and 98 correlations (ie, edges) corresponding to P |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/CIRCRESAHA.117.312482 |