Microscopic Description of the Ferroism in Lead-Free AlFeO3

The microscopic origin of the ferroic and multiferroic properties of AlFeO 3 have been carefully investigated. The maximum entropy method was applied to X-ray diffraction data and ab initio density functional theory calculations in order to obtain the electron density distributions and electric pola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-04, Vol.8 (1), p.1-8, Article 6420
Hauptverfasser: Santos, Guilherme M., Catellani, Igor B., Santos, Ivair A., Guo, Ruyan, Bhalla, Amar S., Padilha, José Eduardo, Cótica, Luiz F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microscopic origin of the ferroic and multiferroic properties of AlFeO 3 have been carefully investigated. The maximum entropy method was applied to X-ray diffraction data and ab initio density functional theory calculations in order to obtain the electron density distributions and electric polarization. The study of chemical bonds shows that the bonds between Fe(3d) and O(2p) ions are anisotropic, leading to the configuration of shorter/longer and stronger/weaker bonds. This leads to electric polarization. Density of states calculations showed a magnetic polarization as a result of a weak ferromagnetic ordering. These results unambiguously show that AlFeO 3 is a multiferroic material and exhibits a magnetoelectric coupling at room temperature, as has already been shown by experiments.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-24880-4