Sensorimotor gating deficits in “two-hit” models of schizophrenia risk factors

Genetic and environmental models of neuropsychiatric disease have grown exponentially over the last 20years. One measure that is often used to evaluate the translational relevance of these models to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Schizophrenia research 2018-08, Vol.198, p.68-83
Hauptverfasser: Khan, Asma, Powell, Susan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic and environmental models of neuropsychiatric disease have grown exponentially over the last 20years. One measure that is often used to evaluate the translational relevance of these models to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of sensorimotor gating. Deficient PPI characterizes several neuropsychiatric disorders but has been most extensively studied in schizophrenia. It has become a useful tool in translational neuropharmacological and molecular genetics studies because it can be measured across species using almost the same experimental parameters. Although initial studies of PPI in rodents were pharmacological because of the robust predictive validity of PPI for antipsychotic efficacy, more recently, PPI has become standard common behavioral measures used in genetic and neurodevelopmental models of schizophrenia. Here we review “two hit” models of schizophrenia and discuss the utility of PPI as a tool in phenotyping these models of relevant risk factors. In the review, we consider approaches to rodent models of genetic and neurodevelopmental risk factors and selectively review “two hit” models of gene×environment and environment×environment interactions in which PPI has been measured.
ISSN:0920-9964
1573-2509
DOI:10.1016/j.schres.2017.10.009