Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria

As the importance of bacteriophages as novel antimicrobials and potential diagnostics comes increasingly into focus, there is a heightened interest in understanding the mechanisms of how they interact with their bacterial hosts. The first step of a bacteriophage (phage) infection is the recognition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical reviews 2018-04, Vol.10 (2), p.535-542
Hauptverfasser: Dowah, Ahmed S. A., Clokie, Martha R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the importance of bacteriophages as novel antimicrobials and potential diagnostics comes increasingly into focus, there is a heightened interest in understanding the mechanisms of how they interact with their bacterial hosts. The first step of a bacteriophage (phage) infection is the recognition of specific moieties on the bacterial cell surface as determined by their phage receptor binding proteins (RBPs). Knowledge of RBPs and how they interact with bacteria has been driven by studies of model phages and of industrially important phages, such as those that impact the dairy industry. Therefore, data from these phage groups constitute the majority of this review. We start with a brief introduction to phages, their life cycles and known receptors. We then review the state-of-the-art knowledge of phage RBPs of Gram-positive bacteria in the context of the better understood Gram-negative bacterial RBPs. In general, more is known about the RBPs of siphoviruses than myoviruses, which is reflected here, but for both virus families, where possible, we show what RBPs are, how they are arranged within phage genomes and what is known about their structures. As RBPs are the key determinant of phage specificity, studying and characterising them is important, for downstream applications such as diagnostic and therapeutic purposes.
ISSN:1867-2450
1867-2469
DOI:10.1007/s12551-017-0382-3