Possible superconductivity in the Bismuth IV solid phase under pressure
The first successful theory of superconductivity was the one proposed by Bardeen, Cooper and Schrieffer in 1957. This breakthrough fostered a remarkable growth of the field that propitiated progress and questionings, generating alternative theories to explain specific phenomena. For example, it has...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-04, Vol.8 (1), p.5946-7, Article 5946 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first successful theory of superconductivity was the one proposed by Bardeen, Cooper and Schrieffer in 1957. This breakthrough fostered a remarkable growth of the field that propitiated progress and questionings, generating alternative theories to explain specific phenomena. For example, it has been argued that Bismuth, being a semimetal with a low number of carriers, does not comply with the basic hypotheses underlying BCS and therefore a different approach should be considered. Nevertheless, in 2016 based on BCS we put forth a prediction that Bi at ambient pressure becomes a superconductor at 1.3 mK. A year later an experimental group corroborated that in fact Bi is a superconductor with a transition temperature of 0.53 mK, a result that eluded previous work. So, since Bi is superconductive in almost all the different structures and phases, the question is why Bi-IV has been elusive and has not been found yet to superconduct? Here we present a study of the electronic and vibrational properties of Bi-IV and infer its possible superconductivity using a BCS approach. We predict that if the Bi-IV phase structure were cooled down to liquid helium temperatures it would also superconduct at a
T
c
of 4.25 K. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-24150-3 |