Phosphorylation coexists with O‐GlcNAcylation in a plant virus protein and influences viral infection

Summary Phosphorylation and O‐GlcNAcylation are two widespread post‐translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O‐GlcNAcylation of the capsid protein (CP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2018-06, Vol.19 (6), p.1427-1443
Hauptverfasser: Martínez‐Turiño, Sandra, Pérez, José De Jesús, Hervás, Marta, Navajas, Rosana, Ciordia, Sergio, Udeshi, Namrata D., Shabanowitz, Jeffrey, Hunt, Donald F., García, Juan Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Phosphorylation and O‐GlcNAcylation are two widespread post‐translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O‐GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N‐terminus and the beginning of the core region. In contrast with the ‘yin–yang’ mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O‐GlcNAcylated (serines Ser‐25, Ser‐81, Ser‐101 and Ser‐118). Our findings show that PPV CP can be concurrently phosphorylated and O‐GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser‐25 in virions recovered from O‐GlcNAcylation‐deficient plants, suggesting that crosstalk between O‐GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O‐GlcNAcylation in the N‐proximal segment of CP allows a fine‐tuning of protein stability, providing the amount of CP required in each step of viral infection.
ISSN:1464-6722
1364-3703
DOI:10.1111/mpp.12626