A noninvasive hemoglobin monitor in the pediatric intensive care unit

Abstract Background Critically ill pediatric patients frequently require hemoglobin monitoring. Accurate noninvasive Hb (SpHb) would allow practitioners to decrease anemia from repeated blood draws, traumatic blood draws, and a decreased number of laboratory Hb (LabHb) medical tests. The Food and Dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2015-05, Vol.195 (1), p.257-262
Hauptverfasser: Phillips, Michael R., MD, Khoury, Amal L., MD, Bortsov, Andrey V., MD, PhD, Marzinsky, Amy, BSN, RN, OCN, Short, Kathy A., RRT, RN, Cairns, Bruce A., MD, Charles, Anthony G., MD, MPH, Joyner, Benny L., MD, MPH, McLean, Sean E., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Critically ill pediatric patients frequently require hemoglobin monitoring. Accurate noninvasive Hb (SpHb) would allow practitioners to decrease anemia from repeated blood draws, traumatic blood draws, and a decreased number of laboratory Hb (LabHb) medical tests. The Food and Drug Administration has approved the Masimo Pronto SpHb and associated Rainbow probes; however, its use in the pediatric intensive care unit (PICU) is controversial. In this study, we define the degree of agreement between LabHb and SpHb using the Masimo Pronto SpHb Monitor and identify clinical and demographic conditions associated with decreased accuracy. Materials and methods We performed a prospective, observational study in a large PICU at an academic medical center. Fifty-three pediatric patients (30-d and 18-y-old), weighing >3 kg, admitted to the PICU from January–April 2013 were examined. SpHb levels measured at the time of LabHb blood draw were compared and analyzed. Results Only 83 SpHb readings were obtained in 118 attempts (70.3%) and 35 readings provided a result of “unable to obtain.” The mean LabHb and SpHb were 11.1 g/dL and 11.2 g/dL, respectively. Bland–Altman analysis showed a mean difference of 0.07 g/dL with a standard deviation of ±2.59 g/dL. Pearson correlation is 0.55, with a 95% confidence interval between 0.38 and 0.68. Logistic regression showed that extreme LabHb values, increasing skin pigmentation, and increasing body mass index were predictors of poor agreement between SpHb and LabHb ( P  
ISSN:0022-4804
1095-8673
DOI:10.1016/j.jss.2014.12.051