T227. THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 REGULATES STRIATAL DOPAMINE RELEASE VIA AN ENDOCANNABINOID-DEPENDENT MECHANISM: IMPLICATIONS FOR THE TREATMENT OF SCHIZOPHRENIA

Abstract Background Clinical and preclinical studies suggest that selective activators of the muscarinic M4 receptor have exciting potential as a novel approach for treatment of schizophrenia. M4 reduces striatal dopamine (DA) though release of endocannabinoids (eCB), providing a mechanism for local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Schizophrenia bulletin 2018-04, Vol.44 (suppl_1), p.S204-S205
Hauptverfasser: Yohn, Samantha, Covey, Daniel, Foster, Daniel, Moehle, Mark, Galbraith, Jordan, Cheer, Joseph, Lindsley, Craig, Jeffrey Conn, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Clinical and preclinical studies suggest that selective activators of the muscarinic M4 receptor have exciting potential as a novel approach for treatment of schizophrenia. M4 reduces striatal dopamine (DA) though release of endocannabinoids (eCB), providing a mechanism for local effects on DA signaling in the striatum. M4 signals through Gαi/o and does not couple to Gαq/11 or induce calcium (Ca++) mobilization. This raises the possibility that M4-induced eCB release and inhibition of DA release may require co-activation of another receptor that activates Gαq/11. If so, this receptor could provide a novel target that may be more proximal to inhibition of DA release. Interestingly, the group 1 metabotropic glutamate (mGlu) receptors (mGlu1 and Glu5), couple to Gαq/11 and activate eCB signaling in multiple brain regions. Methods We tested the hypothesis that M4-induced reductions in DA release and subsequent antipsychotic-effect requires co-activation of group 1 mGlu receptors. The effect of M4 activation on electrically-evoked DA release in striatal slices was assessed using fast-scan cyclic voltammetry (FSCV) in the absence or presence of selective negative allosteric modulators (NAMs) of group 1 mGlu receptor subtypes. To evaluate the potential role of mGlu1, we determined the effects of a selective mGlu1 positive allosteric modulators (PAMs) on striatal DA release and antipsychotic-like activity in rodent models that are dependent on increased DA transmission. Since reductions in DA signaling, including D1 signaling have been implicated in reduced motivation, we also determined the effects of an mGlu1 PAM, M4 PAM, and the typical antipsychotic haloperidol on motivational responding in a progressive ratio (PR) schedule. Results We now present exciting new data in which we found that activation of mGlu1 through application of exogenous agonists or selective stimulation of thalamostriatal afferents induces a reduction of striatal DA release and that selective mGlu1 PAMs have robust antipsychotic-like effects in rodent models. Interestingly, our studies also suggest that mGlu1 activation is required for M4 PAM-induced inhibition of DA release and antipsychotic-like effects. However, in contrast to available antipsychotic agents, the present results and previous studies suggest that mGlu1 and M4 PAMs reduce DA signaling through local release of an eCB from striatal SPNs and activation of CB2 receptors on neighboring DA terminals to reduce
ISSN:0586-7614
1745-1701
DOI:10.1093/schbul/sby016.503