Chemotactic behavior of spermatozoa captured using a microfluidic chip

Chemotaxis, as a mechanism for sperm guidance in vivo, is an enigma which has been difficult to demonstrate. To address this issue, various devices have been designed to study sperm chemotaxis in vitro. Limitations of traditional chemotaxis devices were related to the inability to maintain a stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2018-03, Vol.12 (2), p.024112-024112
Hauptverfasser: Bhagwat, Shweta, Sontakke, Shraddha, K., Deekshith, Parte, Priyanka, Jadhav, Sameer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemotaxis, as a mechanism for sperm guidance in vivo, is an enigma which has been difficult to demonstrate. To address this issue, various devices have been designed to study sperm chemotaxis in vitro. Limitations of traditional chemotaxis devices were related to the inability to maintain a stable concentration gradient as well as track single sperm over long times. Microfluidics technology, which provides superior control over fluid flow, has been recently used to generate stable concentration gradients for investigating the chemotactic behavior of several cell types including spermatozoa. However, the chemotactic behavior of sperm has not been unequivocally demonstrated even in these studies due to the inability to distinguish it from rheotaxis, thermotaxis, and chemokinesis. For instance, the presence of fluid flow in the microchannels not only destabilizes the concentration gradient but also elicits a rheotactic response from sperm. In this work, we have designed a microfluidic device which can be used to establish both, a uniform concentration and a uniform concentration gradient in a stationary fluid. By facilitating measurement of sperm response in ascending, descending ,and uniform chemoattractant concentration, the assay could isolate sperm chemotactic response from rheotaxis and chemokinesis. The device was validated using acetylcholine, a known chemoattractant and further tested with rat oviductal fluid from the estrus phase.
ISSN:1932-1058
1932-1058
DOI:10.1063/1.5023574