α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart

Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2018-03, Vol.145 (5), p.dev149823-dev149823
Hauptverfasser: Vite, Alexia, Zhang, Caimei, Yi, Roslyn, Emms, Sabrina, Radice, Glenn L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin ( ) and αT-catenin ( ) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity and increased cardiomyocyte proliferation that was dependent on Yap activity. To assess effects on tension, cardiomyocytes were cultured on deformable polyacrylamide hydrogels of varying stiffness. When grown on a stiff substrate, DKO cardiomyocytes exhibited increased cell spreading, nuclear Yap and proliferation. A low dose of either a myosin or RhoA inhibitor was sufficient to block Yap accumulation in the nucleus. Finally, activation of RhoA was sufficient to increase nuclear Yap in wild-type cardiomyocytes. These data demonstrate that α-catenins regulate ICD maturation and actomyosin contractility, which, in turn, control Yap subcellular localization, thus providing an explanation for the loss of proliferative capacity in the newborn mammalian heart.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.149823