Engineered control of enzyme structural dynamics and function
Enzymes undergo a range of internal motions from local, active site fluctuations to large‐scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engin...
Gespeichert in:
Veröffentlicht in: | Protein science 2018-04, Vol.27 (4), p.825-838 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enzymes undergo a range of internal motions from local, active site fluctuations to large‐scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post‐translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus‐responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine. |
---|---|
ISSN: | 0961-8368 1469-896X |
DOI: | 10.1002/pro.3379 |