Linear Acceleration in Direct Head Contact Across Impact Type, Player Position, and Playing Scenario in Collegiate Women's Soccer Players
Heading, an integral component of soccer, exposes athletes to a large number of head impacts over a career. The literature has begun to indicate that cumulative exposure may lead to long-term functional and psychological deficits. Quantifying an athlete's exposure over a season is a first step...
Gespeichert in:
Veröffentlicht in: | Journal of athletic training 2018-02, Vol.53 (2), p.115-121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heading, an integral component of soccer, exposes athletes to a large number of head impacts over a career. The literature has begun to indicate that cumulative exposure may lead to long-term functional and psychological deficits. Quantifying an athlete's exposure over a season is a first step in understanding cumulative exposure.
To measure the frequency and magnitude of direct head impacts in collegiate women's soccer players across impact type, player position, and game or practice scenario.
Cross-sectional study.
National Collegiate Athletic Association Division I institution.
Twenty-three collegiate women's soccer athletes.
Athletes wore Smart Impact Monitor accelerometers during all games and practices. Impacts were classified during visual, on-field monitoring of athletic events. All direct head impacts that exceeded the 10 g threshold were included in the final data analysis. The dependent variable was linear acceleration, and the fixed effects were (1) type of impact: clear, pass, shot, unintentional deflection, or head-to-head contact; (2) field position: goalkeeper, defense, forward, or midfielder; (3) playing scenario: game or practice.
Shots (32.94 g ± 12.91 g, n = 38; P = .02) and clears (31.09 g ± 13.43 g, n = 101; P = .008) resulted in higher mean linear accelerations than passes (26.11 g ± 15.48 g, n = 451). Head-to-head impacts (51.26 g ± 36.61 g, n = 13; P < .001) and unintentional deflections (37.40 g ± 34.41 g, n = 24; P = .002) resulted in higher mean linear accelerations than purposeful headers (ie, shots, clears, and passes). No differences were seen in linear acceleration across player position or playing scenario.
Nonheader impacts, including head-to-head impacts and unintentional deflections, resulted in higher mean linear accelerations than purposeful headers, including shots, clears, and passes, but occurred infrequently on the field. Therefore, these unanticipated impacts may not add substantially to an athlete's cumulative exposure, which is a function of both frequency and magnitude of impact. |
---|---|
ISSN: | 1062-6050 1938-162X |
DOI: | 10.4085/1062-6050-90-17 |