Integration of pro- and anti-angiogenic signals by endothelial cells

Angiogenesis or neovascularization is a complex multi-step physiological process that occurs throughout life both in normal tissues and in disease. It is tightly regulated by the balance between pro-angiogenic and anti-angiogenic factors. The angiogenic switch has been identified as the key step dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell communication and signaling 2018-03, Vol.12 (1), p.171-179
Hauptverfasser: Kazerounian, Shideh, Lawler, Jack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiogenesis or neovascularization is a complex multi-step physiological process that occurs throughout life both in normal tissues and in disease. It is tightly regulated by the balance between pro-angiogenic and anti-angiogenic factors. The angiogenic switch has been identified as the key step during tumor progression in which the balance between pro-angiogenic and anti-angiogenic factors leans toward pro-angiogenic stimuli promoting the progression of tumors from dormancy to dysplasia and ultimately malignancy. This event can be described as either the outcome of a genetic event occurring in cancer cells themselves, or the positive and negative cross-talk between tumor-associated endothelial cells and other cellular components of the tumor microenvironment. In recent years, the mechanisms underlying the angiogenic switch have been extensively investigated in particular to identify therapeutic targets that can lead to development of effective therapies. In this review, we will discuss the current findings on the regulatory pathways in endothelial cells that are involved in the angiogenic switch with an emphasis on the role of anti-angiogenic protein, thrombospondin-1 (TSP-1) and pro-angiogenic factor, vascular endothelial growth factor (VEGF).
ISSN:1873-9601
1873-961X
DOI:10.1007/s12079-017-0433-3