Single-stranded DNA aptamer targeting and neutralization of anti-D alloantibody: a potential therapeutic strategy for haemolytic diseases caused by Rhesus alloantibody
Rhesus (Rh) D antigen is the most important antigen in the Rh blood group system because of its strong immunogenicity. When RhD-negative individuals are exposed to RhD-positive blood, they may produce anti-D alloantibody, potentially resulting in delayed haemolytic transfusion reactions and Rh haemo...
Gespeichert in:
Veröffentlicht in: | Blood transfusion = Trasfusione del sangue 2018-02, Vol.16 (2), p.184-192 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rhesus (Rh) D antigen is the most important antigen in the Rh blood group system because of its strong immunogenicity. When RhD-negative individuals are exposed to RhD-positive blood, they may produce anti-D alloantibody, potentially resulting in delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn, which are difficult to treat. Inhibition of the binding of anti-D antibody with RhD antigens on the surface of red blood cells may effectively prevent immune haemolytic diseases.
In this study, single-stranded (ss) DNA aptamers, specifically binding to anti-D antibodies, were selected via systematic evolution of ligands by exponential enrichment (SELEX) technology. After 14 rounds of selection, the purified ssDNA was sequenced using a Personal Genome Machine system. Haemagglutination inhibition assays were performed to screen aptamers for biological activity in terms of blocking antigen-antibody reactions: the affinity and specificity of the aptamers were also determined.
In addition to high specificity, the aptamers which were selected showed high affinity for anti-D antibodies with dissociation constant (K
) values ranging from 51.46±14.90 to 543.30±92.59 nM. By the combined use of specific ssDNA aptamer 7 and auxiliary ssDNA aptamer 2, anti-D could be effectively neutralised at low concentrations of the aptamers.
Our results demonstrate that ssDNA aptamers may be a novel, promising strategy for the treatment of delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn. |
---|---|
ISSN: | 1723-2007 |
DOI: | 10.2450/2016.0123-16 |