Seeing the forest beyond the trees: Predicting survival in burn patients with machine learning

This study aims to identify predictors of survival for burn patients at the patient and hospital level using machine learning techniques. The HCUP SID for California, Florida and New York were used to identify patients admitted with a burn diagnosis and merged with hospital data from the AHA Annual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of surgery 2018-03, Vol.215 (3), p.411-416
Hauptverfasser: Cobb, Adrienne N., Daungjaiboon, Witawat, Brownlee, Sarah A., Baldea, Anthony J., Sanford, Arthur P., Mosier, Michael M., Kuo, Paul C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to identify predictors of survival for burn patients at the patient and hospital level using machine learning techniques. The HCUP SID for California, Florida and New York were used to identify patients admitted with a burn diagnosis and merged with hospital data from the AHA Annual Survey. Random forest and stochastic gradient boosting (SGB) were used to identify predictors of survival at the patient and hospital level from the top performing model. We analyzed 31,350 patients from 670 hospitals. SGB (AUC 0.93) and random forest (AUC 0.82) best identified patient factors such as age and absence of renal failure (p 
ISSN:0002-9610
1879-1883
1879-1883
DOI:10.1016/j.amjsurg.2017.10.027