Vitamin D ameliorates impaired wound healing in streptozotocin-induced diabetic mice by suppressing NF-κB-mediated inflammatory genes

Diabetic wounds are characterized by delayed wound healing due to persistent inflammation and excessive production of reactive oxygen species. Vitamin D, which is well acknowledged to enhance intestinal calcium absorption and increase in plasma calcium level, has recently been shown to display benef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience reports 2018-04, Vol.38 (2)
Hauptverfasser: Yuan, YiFeng, Das, Sushant K, Li, MaoQuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic wounds are characterized by delayed wound healing due to persistent inflammation and excessive production of reactive oxygen species. Vitamin D, which is well acknowledged to enhance intestinal calcium absorption and increase in plasma calcium level, has recently been shown to display beneficial effects in various vascular diseases by promoting angiogenesis and inhibiting inflammatory responses. However, the role of Vitamin D in diabetic wound healing is still unclear. In the present study, we investigated the role of Vitamin D in cutaneous wound healing in streptozotocin (STZ)-induced diabetic mice. Four weeks after injection of STZ, a full thickness excisional wound was created with a 6-mm diameter sterile biopsy punch on the dorsum of the mice. Vitamin D was given consecutively for 14 days by intraperitoneal injection. Vitamin D supplementation significantly accelerated wound healing in diabetic mice and improved the healing quality as assessed by measuring the wound closure rate and histomorphometric analyses. By monitoring the level of pro-inflammatory cytokines tumor necrosis factor-α ( ), interleukin (IL) 6 ( ), ) in the wounds, reduced inflammatory response was found in VD treatment group. Furthermore, nuclear factor κB (NF-κB) pathway was found to be involved in the process of diabetic wound healing by assessing the relative proteins in diabetic wounds. Vitamin D supplementation obviously suppressed NF-κB pathway activation. These results demonstrated that Vitamin D improves impaired wound healing in STZ-induced diabetic mice through suppressing NF-κB-mediated inflammatory gene expression.
ISSN:0144-8463
1573-4935
DOI:10.1042/BSR20171294