Development of a risk prediction model for lung cancer: The Japan Public Health Center‐based Prospective Study

Although the impact of tobacco consumption on the occurrence of lung cancer is well‐established, risk estimation could be improved by risk prediction models that consider various smoking habits, such as quantity, duration, and time since quitting. We constructed a risk prediction model using a popul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2018-03, Vol.109 (3), p.854-862
Hauptverfasser: Charvat, Hadrien, Sasazuki, Shizuka, Shimazu, Taichi, Budhathoki, Sanjeev, Inoue, Manami, Iwasaki, Motoki, Sawada, Norie, Yamaji, Taiki, Tsugane, Shoichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the impact of tobacco consumption on the occurrence of lung cancer is well‐established, risk estimation could be improved by risk prediction models that consider various smoking habits, such as quantity, duration, and time since quitting. We constructed a risk prediction model using a population of 59 161 individuals from the Japan Public Health Center (JPHC) Study Cohort II. A parametric survival model was used to assess the impact of age, gender, and smoking‐related factors (cumulative smoking intensity measured in pack‐years, age at initiation, and time since cessation). Ten‐year cumulative probability of lung cancer occurrence estimates were calculated with consideration of the competing risk of death from other causes. Finally, the model was externally validated using 47 501 individuals from JPHC Study Cohort I. A total of 1210 cases of lung cancer occurred during 986 408 person‐years of follow‐up. We found a dose‐dependent effect of tobacco consumption with hazard ratios for current smokers ranging from 3.78 (2.00‐7.16) for cumulative consumption ≤15 pack‐years to 15.80 (9.67‐25.79) for >75 pack‐years. Risk decreased with time since cessation. Ten‐year cumulative probability of lung cancer occurrence estimates ranged from 0.04% to 11.14% in men and 0.07% to 6.55% in women. The model showed good predictive performance regarding discrimination (cross‐validated c‐index = 0.793) and calibration (cross‐validated χ2 = 6.60; P‐value = .58). The model still showed good discrimination in the external validation population (c‐index = 0.772). In conclusion, we developed a prediction model to estimate the probability of developing lung cancer based on age, gender, and tobacco consumption. This model appears useful in encouraging high‐risk individuals to quit smoking and undergo increased surveillance. Lung cancer represents a particularly important public health issue in Japan where it is the third most commonly diagnosed cancer and ranks first in terms of cancer‐related death. In the present work, we used data from a cohort study of close to 60 000 individuals to construct a risk prediction model that allows the estimation of the 10‐year cumulative probability of lung cancer occurrence. This model might be used to prompt individuals to modify their lifestyle habits, attend regular check‐up visits, and participate in screening programs.
ISSN:1347-9032
1349-7006
DOI:10.1111/cas.13509