Mitochondrial network responses in oxidative physiology and disease

Mitochondrial activities are linked directly or indirectly to all cellular functions in aerobic eukaryotes. Omics methods enable new approaches to study functional organization of mitochondria and their adaptive and maladaptive network responses to bioenergetic fuels, physiologic demands, environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2018-02, Vol.116, p.31-40
Hauptverfasser: Go, Young-Mi, Fernandes, Jolyn, Hu, Xin, Uppal, Karan, Jones, Dean P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondrial activities are linked directly or indirectly to all cellular functions in aerobic eukaryotes. Omics methods enable new approaches to study functional organization of mitochondria and their adaptive and maladaptive network responses to bioenergetic fuels, physiologic demands, environmental challenges and aging. In this review, we consider mitochondria collectively within a multicellular organism as a macroscale “mitochondriome”, functioning to organize bioenergetics and metabolism as an organism utilizes environmental resources and protects against environmental threats. We address complexities of knowledgebase-driven functional mapping of mitochondrial systems and then consider data-driven network mapping using omics methods. Transcriptome-metabolome-wide association study (TMWAS) shows connectivity and organization of nuclear transcription with mitochondrial transport systems in cellular responses to mitochondria-mediated toxicity. Integration of redox and respiratory measures with TMWAS shows central redox hubs separating systems linked to oxygen consumption rate and H2O2 production. Combined redox proteomics, metabolomics and transcriptomics further shows that physiologic network structures can be visualized separately from toxicologic networks. These data-driven integrated omics methods create new opportunities for mitochondrial systems biology. [Display omitted] •Integration of mitochondrial knowledge is limited by complexity and criteria for organizational hierarchy.•Combination of data-driven omics analysis with existing knowledgebase enables development of mitochondrial systems biology.•Systems biology models of mitochondria could improve health and disease management.
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2018.01.005