4-Hydroxy-2-nonenal Alkylated and Peroxynitrite Nitrated Proteins Localize to the Fused Mitochondria in Malpighian Epithelial Cells of Type IV Collagen Drosophila Mutants

Background. Human type IV collagenopathy is associated with mutations within the COL4A1 and to a less extent the COL4A2 genes. The proteins encoded by these genes form heterotrimers and are the highest molar ratio components of the ubiquitous basement membrane. The clinical manifestations of the COL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2018-01, Vol.2018 (2018), p.1-8
Hauptverfasser: Csiszar, K., Boldogkői, Zsolt, Popovics, Nikoletta, Kiss, András A., Mink, Mátyás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Human type IV collagenopathy is associated with mutations within the COL4A1 and to a less extent the COL4A2 genes. The proteins encoded by these genes form heterotrimers and are the highest molar ratio components of the ubiquitous basement membrane. The clinical manifestations of the COL4A1/A2 mutations are systemic affecting many tissues and organs among these kidneys. In order to uncover the cellular and biochemical alterations associated with aberrant type IV collagen, we have explored the phenotype of the Malpighian tubules, the secretory organ and insect kidney model, in col4a1 collagen gene mutants of the fruit fly Drosophila melanogaster. In Malpighian epithelial cells of col4a1 mutants, robust mitochondrial fusion indicated mutation-induced stress. Immunohistochemistry detected proteins nitrated by peroxynitrite that localized to the enlarged mitochondria and increased level of membrane peroxidation, assessed by the amount of proteins alkylated by 4-hydroxy-2-nonenal that similarly localized to the fused mitochondria. Nuclei within the Malpighian epithelium showed TUNEL-positivity suggesting cell degradation. The results demonstrated that col4a1 mutations affect the epithelia and, consequently, secretory function of the Malpighian tubules and provide mechanistic insight into col4a1 mutation-associated functional impairments not yet reported in human patients and in mouse models with mutant COL4A1.
ISSN:2314-6133
2314-6141
DOI:10.1155/2018/3502401