Biomimetic nucleus pulposus scaffold created from bovine caudal intervertebral disc tissue utilizing an optimal decellularization procedure

Intervertebral disc (IVD) degeneration (IDD) and herniation (IDH) can result in low back pain and impart significant socioeconomic burden. These pathologies involve detrimental alteration to the nucleus pulposus (NP) either via biochemical degradation or extrusion from the IVD, respectively. Thus, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2016-12, Vol.104 (12), p.3093-3106
Hauptverfasser: Fernandez, Christopher, Marionneaux, Alan, Gill, Sanjitpal, Mercuri, Jeremy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intervertebral disc (IVD) degeneration (IDD) and herniation (IDH) can result in low back pain and impart significant socioeconomic burden. These pathologies involve detrimental alteration to the nucleus pulposus (NP) either via biochemical degradation or extrusion from the IVD, respectively. Thus, engineering living NP tissue utilizing biomaterial scaffolds that recapitulate native NP microarchitecture, biochemistry, mechanical properties, and which support cell viability represents an approach to aiding patients with IDD and IDH. To date, an ideal biomaterial to support NP regeneration has yet to be developed; however, one promising approach to generating biomimetic materials is to employ the decellularization (decell) of xenogeneic NP tissue to remove host DNA while maintaining critical native extracellular matrix (ECM) components. Herein, 13 different procedures were evaluated in an attempt to decell bovine caudal IVD NP tissue. An optimal method was identified which was confirmed to effectively remove bovine DNA, while maintaining physiologically relevant amounts of glycosaminoglycan (GAG) and type II collagen. Unconfined static and dynamic compressive mechanical properties of scaffolds approached values reported for human NP and viability of human amniotic stem cells (hAMSCs) was maintained on noncrosslinked and EDC/NHS treated scaffolds for up to 14 days in culture. Taken together, NP tissue obtained from bovine caudal IVDs can be successfully decelled in order to generate a biomimetic scaffold for NP tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3093–3106, 2016.
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.35858