Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix Metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions

Context: Due to increase in the number of patients with impaired immunity, the incidence of liver cancer has increased considerably. Aims: The aim of this study is the investigation the in vitro anticancer effect of zerumbone (ZER) on hepatocellular carcinoma (HCC). Materials and Methods: The antica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacognosy Magazine 2017-10, Vol.13 (52), p.731-736
Hauptverfasser: Samad, Nozlena, Abdul, Ahmad, Rahman, Heshu, Rasedee, Abdullah, Tengku Ibrahim, Tengku, Keon, Yeap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context: Due to increase in the number of patients with impaired immunity, the incidence of liver cancer has increased considerably. Aims: The aim of this study is the investigation the in vitro anticancer effect of zerumbone (ZER) on hepatocellular carcinoma (HCC). Materials and Methods: The anticancer mechanism of ZER was determined by the rat aortic ring, human umbilical vein endothelial cells (HUVECs) proliferation, chorioallantoic membrane, cell migration, and proliferation inhibition assays. Results: Our results showed that ZER reduced tube formation by HUVECs effectively inhibits new blood vessel and tissue matrix formation. Western blot analysis revealed that ZER significantly (P < 0.05) decreased expression of molecular effectors of angiogenesis, the matrix metalloproteinase-9, vascular endothelial growth factor (VEGF), and VEGF receptor proteins. We found that ZER inhibited the proliferation and suppressed migration of HepG2 cell in dose-dependent manner. Statistical Analysis Used: Statistical analyses were performed according to the Statistical Package for Social Science (SPSS) version 17.0. The data were expressed as the mean ± standard deviation and analyzed using a one-way analysis of variance. A P < 0.05 was considered statistically significant. Conclusion: The study for the first time showed that ZER is an inhibitor angiogenesis, tumor growth, and spread, which is suggested to be the mechanisms for its anti-HCC effect. Abbreviations used: ZER: Zerumbone, MMP-9: Matrix metalloproteinase-9, VEGF: Vascular endothelial growth factor, VEGFR: Vascular endothelial growth factor receptor, HUVECs: Human umbilical vein endothelial cells, HCC: Hepatocellular carcinoma, HIFCS: Heat inactivated fetal calf serum, DMSO: Dimethyl sulfoxide, EDTA: Ethyldiaminetetraacetic acid, Ig: Immunoglobulin, CAM: Chorioallantoic membrane, HRP: Horseradish peroxidase, NIH: National Institutes of Health, MTT: Microtetrazolium, SPSS: Statistical Package for Social Science.
ISSN:0973-1296
0976-4062
DOI:10.4103/pm.pm_18_17