Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry
Past greenhouse periods with elevated atmospheric CO₂ were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are on...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-02, Vol.115 (6), p.1174-1179 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Past greenhouse periods with elevated atmospheric CO₂ were characterized by globally warmer sea-surface temperatures (SST). However, the extent to which the high latitudes warmed to a greater degree than the tropics (polar amplification) remains poorly constrained, in particular because there are only a few temperature reconstructions from the tropics. Consequently, the relationship between increased CO₂, the degree of tropical warming, and the resulting latitudinal SST gradient is not well known. Here, we present coupled clumped isotope (Δ47)-Mg/Ca measurements of foraminifera from a set of globally distributed sites in the tropics and midlatitudes. Δ47 is insensitive to seawater chemistry and therefore provides a robust constraint on tropical SST. Crucially, coupling these data with Mg/Ca measurements allows the precise reconstruction of Mg/Casw throughout the Eocene, enabling the reinterpretation of all planktonic foraminifera Mg/Ca data. The combined dataset constrains the range in Eocene tropical SST to 30–36 °C (from sites in all basins). We compare these accurate tropical SST to deep-ocean temperatures, serving as a minimum constraint on high-latitude SST. This results in a robust conservative reconstruction of the early Eocene latitudinal gradient, which was reduced by at least 32 ± 10% compared with present day, demonstrating greater polar amplification than captured by most climate models. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1714744115 |