Type II‑C CRISPR-Cas9 Biology, Mechanism, and Application
Genome editing technologies have been revolutionized by the discovery of prokaryotic RNA-guided defense system called CRISPR-Cas. Cas9, a single effector protein found in type II CRISPR systems, has been at the heart of this genome editing revolution. Nearly half of the Cas9s discovered so far belon...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2018-02, Vol.13 (2), p.357-365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genome editing technologies have been revolutionized by the discovery of prokaryotic RNA-guided defense system called CRISPR-Cas. Cas9, a single effector protein found in type II CRISPR systems, has been at the heart of this genome editing revolution. Nearly half of the Cas9s discovered so far belong to the type II-C subtype but have not been explored extensively. Type II-C CRISPR-Cas systems are the simplest of the type II systems, employing only three Cas proteins. Cas9s are central players in type II-C systems since they function in multiple steps of the CRISPR pathway, including adaptation and interference. Type II-C CRISPR systems are found in bacteria and archaea from very diverse environments, resulting in Cas9s with unique and potentially useful properties. Certain type II-C Cas9s possess unusually long PAMs, function in unique conditions (e.g., elevated temperature), and tend to be smaller in size. Here, we review the biology, mechanism, and applications of the type II-C CRISPR systems with particular emphasis on their Cas9s. |
---|---|
ISSN: | 1554-8929 1554-8937 |
DOI: | 10.1021/acschembio.7b00855 |