Survival prediction in mesothelioma using a scalable Lasso regression model: instructions for use and initial performance using clinical predictors
IntroductionAccurate prognostication is difficult in malignant pleural mesothelioma (MPM). We developed a set of robust computational models to quantify the prognostic value of routinely available clinical data, which form the basis of published MPM prognostic models.MethodsData regarding 269 patien...
Gespeichert in:
Veröffentlicht in: | BMJ open respiratory research 2018-01, Vol.5 (1), p.e000240-e000240 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IntroductionAccurate prognostication is difficult in malignant pleural mesothelioma (MPM). We developed a set of robust computational models to quantify the prognostic value of routinely available clinical data, which form the basis of published MPM prognostic models.MethodsData regarding 269 patients with MPM were allocated to balanced training (n=169) and validation sets (n=100). Prognostic signatures (minimal length best performing multivariate trained models) were generated by least absolute shrinkage and selection operator regression for overall survival (OS), OS |
---|---|
ISSN: | 2052-4439 2052-4439 |
DOI: | 10.1136/bmjresp-2017-000240 |