Intrinsic functional connectivity of the central extended amygdala

The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2018-03, Vol.39 (3), p.1291-1312
Hauptverfasser: Tillman, Rachael M., Stockbridge, Melissa D., Nacewicz, Brendon M., Torrisi, Salvatore, Fox, Andrew S., Smith, Jason F., Shackman, Alexander J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 3
container_start_page 1291
container_title Human brain mapping
container_volume 39
creator Tillman, Rachael M.
Stockbridge, Melissa D.
Nacewicz, Brendon M.
Torrisi, Salvatore
Fox, Andrew S.
Smith, Jason F.
Shackman, Alexander J.
description The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.
doi_str_mv 10.1002/hbm.23917
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999638507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</originalsourceid><addsrcrecordid>eNp1kUtP3DAUha2qiPeif6CK1A0shvH1YxJvKgGCDhKom7K2HOeaMUpsGifQ-ff1EIqgEqvr6_Pp6OgeQr4APQFK2XxVdyeMKyg_kV2gqpxRUPzz5r2QMyVK2CF7Kd1TCiApbJMdphiXoOguObsKQ-9D8rZwY7CDj8G0hY0hYF4e_bAuoiuGFRYWM5k1_DNgaLApTLe-a0xrDsiWM23Cw5e5T24vL36dL2fXP39cnZ9ez6zcZLINF9Iy5AwBVM1l7QCFBeZM_jSG0QV1tRQCReV4bQRiY52pqXMSwCm-T75Pvg9j3WVtyqMfet-Zfq2j8fq9EvxK38VHLStaMgHZ4OjFoI-_R0yD7nyy2LYmYByTBlUuhGC8qjL67T_0Po59Ps2GUmrBK0nLTB1PlO1jSj261zBA9aYZnZvRz81k9uvb9K_kvyoyMJ-AJ9_i-mMnvTy7mSz_AqBQmWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999638507</pqid></control><display><type>article</type><title>Intrinsic functional connectivity of the central extended amygdala</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tillman, Rachael M. ; Stockbridge, Melissa D. ; Nacewicz, Brendon M. ; Torrisi, Salvatore ; Fox, Andrew S. ; Smith, Jason F. ; Shackman, Alexander J.</creator><creatorcontrib>Tillman, Rachael M. ; Stockbridge, Melissa D. ; Nacewicz, Brendon M. ; Torrisi, Salvatore ; Fox, Andrew S. ; Smith, Jason F. ; Shackman, Alexander J.</creatorcontrib><description>The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23917</identifier><identifier>PMID: 29235190</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Adult ; Adults ; affective neuroscience ; Amygdala ; Amygdala - diagnostic imaging ; Amygdala - physiology ; Anxiety ; bed nucleus of the stria terminalis (BST/BNST) ; Brain ; Brain architecture ; Brain Mapping ; central extended amygdala ; Disorders ; Fear ; Female ; Functional morphology ; Hippocampus ; Humans ; Image registration ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Mental disorders ; Neostriatum ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiology ; Neuroimaging ; Neurology ; Nuclei ; Periaqueductal gray area ; Prefrontal cortex ; Regression analysis ; Rest ; Robustness (mathematics) ; Stria terminalis ; Substantia grisea ; Thalamus ; Young Adult</subject><ispartof>Human brain mapping, 2018-03, Vol.39 (3), p.1291-1312</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</citedby><cites>FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</cites><orcidid>0000-0002-3629-4704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807241/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807241/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29235190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tillman, Rachael M.</creatorcontrib><creatorcontrib>Stockbridge, Melissa D.</creatorcontrib><creatorcontrib>Nacewicz, Brendon M.</creatorcontrib><creatorcontrib>Torrisi, Salvatore</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Smith, Jason F.</creatorcontrib><creatorcontrib>Shackman, Alexander J.</creatorcontrib><title>Intrinsic functional connectivity of the central extended amygdala</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Adults</subject><subject>affective neuroscience</subject><subject>Amygdala</subject><subject>Amygdala - diagnostic imaging</subject><subject>Amygdala - physiology</subject><subject>Anxiety</subject><subject>bed nucleus of the stria terminalis (BST/BNST)</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain Mapping</subject><subject>central extended amygdala</subject><subject>Disorders</subject><subject>Fear</subject><subject>Female</subject><subject>Functional morphology</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Image registration</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiology</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Nuclei</subject><subject>Periaqueductal gray area</subject><subject>Prefrontal cortex</subject><subject>Regression analysis</subject><subject>Rest</subject><subject>Robustness (mathematics)</subject><subject>Stria terminalis</subject><subject>Substantia grisea</subject><subject>Thalamus</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtP3DAUha2qiPeif6CK1A0shvH1YxJvKgGCDhKom7K2HOeaMUpsGifQ-ff1EIqgEqvr6_Pp6OgeQr4APQFK2XxVdyeMKyg_kV2gqpxRUPzz5r2QMyVK2CF7Kd1TCiApbJMdphiXoOguObsKQ-9D8rZwY7CDj8G0hY0hYF4e_bAuoiuGFRYWM5k1_DNgaLApTLe-a0xrDsiWM23Cw5e5T24vL36dL2fXP39cnZ9ez6zcZLINF9Iy5AwBVM1l7QCFBeZM_jSG0QV1tRQCReV4bQRiY52pqXMSwCm-T75Pvg9j3WVtyqMfet-Zfq2j8fq9EvxK38VHLStaMgHZ4OjFoI-_R0yD7nyy2LYmYByTBlUuhGC8qjL67T_0Po59Ps2GUmrBK0nLTB1PlO1jSj261zBA9aYZnZvRz81k9uvb9K_kvyoyMJ-AJ9_i-mMnvTy7mSz_AqBQmWo</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Tillman, Rachael M.</creator><creator>Stockbridge, Melissa D.</creator><creator>Nacewicz, Brendon M.</creator><creator>Torrisi, Salvatore</creator><creator>Fox, Andrew S.</creator><creator>Smith, Jason F.</creator><creator>Shackman, Alexander J.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3629-4704</orcidid></search><sort><creationdate>201803</creationdate><title>Intrinsic functional connectivity of the central extended amygdala</title><author>Tillman, Rachael M. ; Stockbridge, Melissa D. ; Nacewicz, Brendon M. ; Torrisi, Salvatore ; Fox, Andrew S. ; Smith, Jason F. ; Shackman, Alexander J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Adults</topic><topic>affective neuroscience</topic><topic>Amygdala</topic><topic>Amygdala - diagnostic imaging</topic><topic>Amygdala - physiology</topic><topic>Anxiety</topic><topic>bed nucleus of the stria terminalis (BST/BNST)</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain Mapping</topic><topic>central extended amygdala</topic><topic>Disorders</topic><topic>Fear</topic><topic>Female</topic><topic>Functional morphology</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Image registration</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiology</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Nuclei</topic><topic>Periaqueductal gray area</topic><topic>Prefrontal cortex</topic><topic>Regression analysis</topic><topic>Rest</topic><topic>Robustness (mathematics)</topic><topic>Stria terminalis</topic><topic>Substantia grisea</topic><topic>Thalamus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tillman, Rachael M.</creatorcontrib><creatorcontrib>Stockbridge, Melissa D.</creatorcontrib><creatorcontrib>Nacewicz, Brendon M.</creatorcontrib><creatorcontrib>Torrisi, Salvatore</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Smith, Jason F.</creatorcontrib><creatorcontrib>Shackman, Alexander J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tillman, Rachael M.</au><au>Stockbridge, Melissa D.</au><au>Nacewicz, Brendon M.</au><au>Torrisi, Salvatore</au><au>Fox, Andrew S.</au><au>Smith, Jason F.</au><au>Shackman, Alexander J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic functional connectivity of the central extended amygdala</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-03</date><risdate>2018</risdate><volume>39</volume><issue>3</issue><spage>1291</spage><epage>1312</epage><pages>1291-1312</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29235190</pmid><doi>10.1002/hbm.23917</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3629-4704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2018-03, Vol.39 (3), p.1291-1312
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807241
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adolescent
Adult
Adults
affective neuroscience
Amygdala
Amygdala - diagnostic imaging
Amygdala - physiology
Anxiety
bed nucleus of the stria terminalis (BST/BNST)
Brain
Brain architecture
Brain Mapping
central extended amygdala
Disorders
Fear
Female
Functional morphology
Hippocampus
Humans
Image registration
Magnetic Resonance Imaging
Male
Medical imaging
Mental disorders
Neostriatum
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
Neuroimaging
Neurology
Nuclei
Periaqueductal gray area
Prefrontal cortex
Regression analysis
Rest
Robustness (mathematics)
Stria terminalis
Substantia grisea
Thalamus
Young Adult
title Intrinsic functional connectivity of the central extended amygdala
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20functional%20connectivity%20of%20the%20central%20extended%20amygdala&rft.jtitle=Human%20brain%20mapping&rft.au=Tillman,%20Rachael%20M.&rft.date=2018-03&rft.volume=39&rft.issue=3&rft.spage=1291&rft.epage=1312&rft.pages=1291-1312&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23917&rft_dat=%3Cproquest_pubme%3E1999638507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999638507&rft_id=info:pmid/29235190&rfr_iscdi=true