Intrinsic functional connectivity of the central extended amygdala
The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2018-03, Vol.39 (3), p.1291-1312 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1312 |
---|---|
container_issue | 3 |
container_start_page | 1291 |
container_title | Human brain mapping |
container_volume | 39 |
creator | Tillman, Rachael M. Stockbridge, Melissa D. Nacewicz, Brendon M. Torrisi, Salvatore Fox, Andrew S. Smith, Jason F. Shackman, Alexander J. |
description | The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data. |
doi_str_mv | 10.1002/hbm.23917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999638507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</originalsourceid><addsrcrecordid>eNp1kUtP3DAUha2qiPeif6CK1A0shvH1YxJvKgGCDhKom7K2HOeaMUpsGifQ-ff1EIqgEqvr6_Pp6OgeQr4APQFK2XxVdyeMKyg_kV2gqpxRUPzz5r2QMyVK2CF7Kd1TCiApbJMdphiXoOguObsKQ-9D8rZwY7CDj8G0hY0hYF4e_bAuoiuGFRYWM5k1_DNgaLApTLe-a0xrDsiWM23Cw5e5T24vL36dL2fXP39cnZ9ez6zcZLINF9Iy5AwBVM1l7QCFBeZM_jSG0QV1tRQCReV4bQRiY52pqXMSwCm-T75Pvg9j3WVtyqMfet-Zfq2j8fq9EvxK38VHLStaMgHZ4OjFoI-_R0yD7nyy2LYmYByTBlUuhGC8qjL67T_0Po59Ps2GUmrBK0nLTB1PlO1jSj261zBA9aYZnZvRz81k9uvb9K_kvyoyMJ-AJ9_i-mMnvTy7mSz_AqBQmWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999638507</pqid></control><display><type>article</type><title>Intrinsic functional connectivity of the central extended amygdala</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tillman, Rachael M. ; Stockbridge, Melissa D. ; Nacewicz, Brendon M. ; Torrisi, Salvatore ; Fox, Andrew S. ; Smith, Jason F. ; Shackman, Alexander J.</creator><creatorcontrib>Tillman, Rachael M. ; Stockbridge, Melissa D. ; Nacewicz, Brendon M. ; Torrisi, Salvatore ; Fox, Andrew S. ; Smith, Jason F. ; Shackman, Alexander J.</creatorcontrib><description>The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23917</identifier><identifier>PMID: 29235190</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Adolescent ; Adult ; Adults ; affective neuroscience ; Amygdala ; Amygdala - diagnostic imaging ; Amygdala - physiology ; Anxiety ; bed nucleus of the stria terminalis (BST/BNST) ; Brain ; Brain architecture ; Brain Mapping ; central extended amygdala ; Disorders ; Fear ; Female ; Functional morphology ; Hippocampus ; Humans ; Image registration ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Mental disorders ; Neostriatum ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiology ; Neuroimaging ; Neurology ; Nuclei ; Periaqueductal gray area ; Prefrontal cortex ; Regression analysis ; Rest ; Robustness (mathematics) ; Stria terminalis ; Substantia grisea ; Thalamus ; Young Adult</subject><ispartof>Human brain mapping, 2018-03, Vol.39 (3), p.1291-1312</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</citedby><cites>FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</cites><orcidid>0000-0002-3629-4704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807241/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807241/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29235190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tillman, Rachael M.</creatorcontrib><creatorcontrib>Stockbridge, Melissa D.</creatorcontrib><creatorcontrib>Nacewicz, Brendon M.</creatorcontrib><creatorcontrib>Torrisi, Salvatore</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Smith, Jason F.</creatorcontrib><creatorcontrib>Shackman, Alexander J.</creatorcontrib><title>Intrinsic functional connectivity of the central extended amygdala</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Adults</subject><subject>affective neuroscience</subject><subject>Amygdala</subject><subject>Amygdala - diagnostic imaging</subject><subject>Amygdala - physiology</subject><subject>Anxiety</subject><subject>bed nucleus of the stria terminalis (BST/BNST)</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain Mapping</subject><subject>central extended amygdala</subject><subject>Disorders</subject><subject>Fear</subject><subject>Female</subject><subject>Functional morphology</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Image registration</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiology</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Nuclei</subject><subject>Periaqueductal gray area</subject><subject>Prefrontal cortex</subject><subject>Regression analysis</subject><subject>Rest</subject><subject>Robustness (mathematics)</subject><subject>Stria terminalis</subject><subject>Substantia grisea</subject><subject>Thalamus</subject><subject>Young Adult</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtP3DAUha2qiPeif6CK1A0shvH1YxJvKgGCDhKom7K2HOeaMUpsGifQ-ff1EIqgEqvr6_Pp6OgeQr4APQFK2XxVdyeMKyg_kV2gqpxRUPzz5r2QMyVK2CF7Kd1TCiApbJMdphiXoOguObsKQ-9D8rZwY7CDj8G0hY0hYF4e_bAuoiuGFRYWM5k1_DNgaLApTLe-a0xrDsiWM23Cw5e5T24vL36dL2fXP39cnZ9ez6zcZLINF9Iy5AwBVM1l7QCFBeZM_jSG0QV1tRQCReV4bQRiY52pqXMSwCm-T75Pvg9j3WVtyqMfet-Zfq2j8fq9EvxK38VHLStaMgHZ4OjFoI-_R0yD7nyy2LYmYByTBlUuhGC8qjL67T_0Po59Ps2GUmrBK0nLTB1PlO1jSj261zBA9aYZnZvRz81k9uvb9K_kvyoyMJ-AJ9_i-mMnvTy7mSz_AqBQmWo</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Tillman, Rachael M.</creator><creator>Stockbridge, Melissa D.</creator><creator>Nacewicz, Brendon M.</creator><creator>Torrisi, Salvatore</creator><creator>Fox, Andrew S.</creator><creator>Smith, Jason F.</creator><creator>Shackman, Alexander J.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3629-4704</orcidid></search><sort><creationdate>201803</creationdate><title>Intrinsic functional connectivity of the central extended amygdala</title><author>Tillman, Rachael M. ; Stockbridge, Melissa D. ; Nacewicz, Brendon M. ; Torrisi, Salvatore ; Fox, Andrew S. ; Smith, Jason F. ; Shackman, Alexander J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-cd345c2e32e119b35bf1e4c12fa2e3aa2060fb544e48f3ba4eedcfab0ff511f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Adults</topic><topic>affective neuroscience</topic><topic>Amygdala</topic><topic>Amygdala - diagnostic imaging</topic><topic>Amygdala - physiology</topic><topic>Anxiety</topic><topic>bed nucleus of the stria terminalis (BST/BNST)</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain Mapping</topic><topic>central extended amygdala</topic><topic>Disorders</topic><topic>Fear</topic><topic>Female</topic><topic>Functional morphology</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Image registration</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiology</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Nuclei</topic><topic>Periaqueductal gray area</topic><topic>Prefrontal cortex</topic><topic>Regression analysis</topic><topic>Rest</topic><topic>Robustness (mathematics)</topic><topic>Stria terminalis</topic><topic>Substantia grisea</topic><topic>Thalamus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tillman, Rachael M.</creatorcontrib><creatorcontrib>Stockbridge, Melissa D.</creatorcontrib><creatorcontrib>Nacewicz, Brendon M.</creatorcontrib><creatorcontrib>Torrisi, Salvatore</creatorcontrib><creatorcontrib>Fox, Andrew S.</creatorcontrib><creatorcontrib>Smith, Jason F.</creatorcontrib><creatorcontrib>Shackman, Alexander J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tillman, Rachael M.</au><au>Stockbridge, Melissa D.</au><au>Nacewicz, Brendon M.</au><au>Torrisi, Salvatore</au><au>Fox, Andrew S.</au><au>Smith, Jason F.</au><au>Shackman, Alexander J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic functional connectivity of the central extended amygdala</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-03</date><risdate>2018</risdate><volume>39</volume><issue>3</issue><spage>1291</spage><epage>1312</epage><pages>1291-1312</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The central extended amygdala (EAc)—including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)—plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community‐dwelling adults. Multiband imaging, high‐precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole‐brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with “deidentified” neuroimaging data.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29235190</pmid><doi>10.1002/hbm.23917</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3629-4704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2018-03, Vol.39 (3), p.1291-1312 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5807241 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adolescent Adult Adults affective neuroscience Amygdala Amygdala - diagnostic imaging Amygdala - physiology Anxiety bed nucleus of the stria terminalis (BST/BNST) Brain Brain architecture Brain Mapping central extended amygdala Disorders Fear Female Functional morphology Hippocampus Humans Image registration Magnetic Resonance Imaging Male Medical imaging Mental disorders Neostriatum Neural networks Neural Pathways - diagnostic imaging Neural Pathways - physiology Neuroimaging Neurology Nuclei Periaqueductal gray area Prefrontal cortex Regression analysis Rest Robustness (mathematics) Stria terminalis Substantia grisea Thalamus Young Adult |
title | Intrinsic functional connectivity of the central extended amygdala |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20functional%20connectivity%20of%20the%20central%20extended%20amygdala&rft.jtitle=Human%20brain%20mapping&rft.au=Tillman,%20Rachael%20M.&rft.date=2018-03&rft.volume=39&rft.issue=3&rft.spage=1291&rft.epage=1312&rft.pages=1291-1312&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23917&rft_dat=%3Cproquest_pubme%3E1999638507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999638507&rft_id=info:pmid/29235190&rfr_iscdi=true |