Overexpressing microRNA-150 attenuates hypoxia-induced human cardiomyocyte cell apoptosis by targeting glucose-regulated protein-94

MicroRNA (miR)-150 has been demonstrated to protect the heart from ischemic injury. However, the protective effect of miR‑150 in hypoxia‑injured cardiomyocytes remains unclear. The present study aimed to investigate the target gene of miR‑150 and the underlying molecular mechanisms of miR‑150 in hyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2018-03, Vol.17 (3), p.4181-4186
Hauptverfasser: Ma, Jian-Lin, Guo, Wen-Ling, Chen, Xue-Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNA (miR)-150 has been demonstrated to protect the heart from ischemic injury. However, the protective effect of miR‑150 in hypoxia‑injured cardiomyocytes remains unclear. The present study aimed to investigate the target gene of miR‑150 and the underlying molecular mechanisms of miR‑150 in hypoxia‑induced cardiomyocyte apoptosis. Using the hypoxia model of human cardiomyocytes (HCMs) in vitro, it was demonstrated that miR‑150 was markedly inhibited in HCMs after hypoxia treatment. Overexpressing miR‑150 significantly decreased hypoxia‑induced HCM death and apoptosis. In addition, GRP94 was revealed to be a direct target of miR‑150. Additionally, GRP94 was demonstrated to be involved in hypoxia‑induced HCM apoptosis, and the protein expression levels of GRP94 were increased in HCMs in the presence of hypoxia. These findings demonstrated that miR‑150 is involved in hypoxia‑mediated gene regulation and apoptosis in HCMs. Furthermore, GRP94 knockout increased the cell viability of hypoxia‑impaired HCMs with miR‑150 mimic or miR‑150 inhibitor transfection. In conclusion, miR‑150 may serve a protective role in cardiomyocyte hypoxia injury, and the underlying mechanism was mediated, at least partially, by inhibiting GRP94 expression. These findings may provide a novel insight for the therapy of hypoxia-induced myocardial I/R injury.
ISSN:1791-2997
1791-3004
DOI:10.3892/mmr.2018.8375