Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics

Both the MRTF-SRF and the YAP-TEAD transcriptional regulatory networks respond to extracellular signals and mechanical stimuli. We show that the MRTF-SRF pathway is activated in cancer-associated fibroblasts (CAFs). The MRTFs are required in addition to the YAP pathway for CAF contractile and proinv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2017-12, Vol.31 (23-24), p.2361-2375
Hauptverfasser: Foster, Charles T, Gualdrini, Francesco, Treisman, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both the MRTF-SRF and the YAP-TEAD transcriptional regulatory networks respond to extracellular signals and mechanical stimuli. We show that the MRTF-SRF pathway is activated in cancer-associated fibroblasts (CAFs). The MRTFs are required in addition to the YAP pathway for CAF contractile and proinvasive properties. We compared MRTF-SRF and YAP-TEAD target gene sets and identified genes directly regulated by one pathway, the other, or both. Nevertheless, the two pathways exhibit mutual dependence. In CAFs, expression of direct MRTF-SRF genomic targets is also dependent on YAP-TEAD activity, and, conversely, YAP-TEAD target gene expression is also dependent on MRTF-SRF signaling. In normal fibroblasts, expression of activated MRTF derivatives activates YAP, while activated YAP derivatives activate MRTF. Cross-talk between the pathways requires recruitment of MRTF and YAP to DNA via their respective DNA-binding partners (SRF and TEAD) and is therefore indirect, arising as a consequence of activation of their target genes. In both CAFs and normal fibroblasts, we found that YAP-TEAD activity is sensitive to MRTF-SRF-induced contractility, while MRTF-SRF signaling responds to YAP-TEAD-dependent TGFβ signaling. Thus, the MRF-SRF and YAP-TEAD pathways interact indirectly through their ability to control cytoskeletal dynamics.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.304501.117