Structural Heteropolysaccharide Adhesion to the Glycocalyx of Visceral Mesothelium
Bioadhesives are biopolymers with potential applications in wound healing, drug delivery, and tissue engineering. Pectin, a plant-based heteropolysaccharide, has recently demonstrated potential as a mucoadhesive in the gut. Since mucoadhesion is a process likely involving the interpenetration of the...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2018-02, Vol.24 (3-4), p.199-206 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bioadhesives are biopolymers with potential applications in wound healing, drug delivery, and tissue engineering. Pectin, a plant-based heteropolysaccharide, has recently demonstrated potential as a mucoadhesive in the gut. Since mucoadhesion is a process likely involving the interpenetration of the pectin polymer with mucin chains, we hypothesized that pectin may also be effective at targeting the glycocalyx of the visceral mesothelium. To explore the potential role of pectin as a mesothelial bioadhesive, we studied the interaction of various pectin formulations with the mesothelium of the lung, liver, bowel, and heart. Tensile strength, peel strength, and shear resistance of the bioadhesive-mesothelial interaction were measured by load/displacement measurements. In both high-methoxyl pectins (HMP) and low-methoxyl pectins, bioadhesion was greatest with an equal weight % formulation with carboxymethylcellulose (CMC). The tensile strength of the high-methoxyl pectin was consistently greater than low-methoxyl or amidated low-methoxyl formulations (
p
|
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2017.0042 |