Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation
Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current meth...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-01, Vol.115 (4), p.720-725 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated triand tetraantennary glycans as substrates. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1718172115 |