Integrating transient cellular and nuclear motions to comprehensively describe cell migration patterns

Various subcellular activities, such as protrusion and detachment, compose a cell migration process. The molecular mechanisms of these subcellular activities have been elucidated. However, there is no method that can assess the contributions of these subcellular activities to the global cell migrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-01, Vol.8 (1), p.1488-12, Article 1488
Hauptverfasser: Lan, Tian, Hung, Shen-Hsiu, Su, Xudong, Wong, Samuel W. K., Tseng, Yiider
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various subcellular activities, such as protrusion and detachment, compose a cell migration process. The molecular mechanisms of these subcellular activities have been elucidated. However, there is no method that can assess the contributions of these subcellular activities to the global cell migration pattern of a given cell type. Hence, we develop a powerful approach based on CN correlations that quantitatively profiles the cell migration pattern of a given cell type in terms of assembled subcellular activities. In this way, we bridge migration data at the cellular level with underlying molecular mechanisms. The CN correlation profile is found to uniquely and consistently represent the cell migration pattern of each cell type probed. It can clearly reveal the effects of molecular perturbations, such as Y27632 and Cdc42 knockdown on each subcellular migratory activity. As a result, the CN correlation approach serves as a cell dynamic descriptor that can extract comprehensive quantitative data from cell migration movies for integrative biological analyses.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-19885-y