Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach

The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-01, Vol.8 (1), p.538-538, Article 538
Hauptverfasser: Vandaele, Rémy, Aceto, Jessica, Muller, Marc, Péronnet, Frédérique, Debat, Vincent, Wang, Ching-Wei, Huang, Cheng-Ta, Jodogne, Sébastien, Martinive, Philippe, Geurts, Pierre, Marée, Raphaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-18993-5