The Mouse Pulvinar Nucleus Links the Lateral Extrastriate Cortex, Striatum, and Amygdala

The pulvinar nucleus is a large thalamic structure involved in the integration of visual and motor signals. The pulvinar forms extensive connections with striate and extrastriate cortical areas, but the impact of these connections on cortical circuits has not previously been directly tested. Using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2018-01, Vol.38 (2), p.347-362
Hauptverfasser: Zhou, Na, Masterson, Sean P, Damron, James K, Guido, William, Bickford, Martha E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pulvinar nucleus is a large thalamic structure involved in the integration of visual and motor signals. The pulvinar forms extensive connections with striate and extrastriate cortical areas, but the impact of these connections on cortical circuits has not previously been directly tested. Using a variety of anatomical, optogenetic, and physiological techniques in male and female mice, we show that pulvinocortical terminals are densely distributed in the extrastriate cortex where they form synaptic connections with spines and small-diameter dendrites. Optogenetic activation of these synapses evoked large excitatory postsynaptic responses in the majority of pyramidal cells, spiny stellate cells, and interneurons within the extrastriate cortex. However, specificity in pulvinar targeting was revealed when recordings were targeted to projection neuron subtypes. The neurons most responsive to pulvinar input were those that project to the striatum and amygdala (76% responsive) or V1 (55%), whereas neurons that project to the superior colliculus were rarely responsive (6%). Because the pulvinar also projects directly to the striatum and amygdala, these results establish the pulvinar nucleus as a hub linking the visual cortex with subcortical regions involved in the initiation and control of movement. We suggest that these circuits may be particularly important for coordinating body movements and visual perception. We found that the pulvinar nucleus can strongly influence extrastriate cortical circuits and exerts a particularly strong impact on the activity of extrastriate neurons that project to the striatum and amygdala. Our results suggest that the conventional hierarchical view of visual cortical processing may not apply to the mouse visual cortex. Instead, our results establish the pulvinar nucleus as a hub linking the visual cortex with subcortical regions involved in the initiation and control of movement, and predict that the execution of visually guided movements relies on this network.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1279-17.2017