Mechanism and regulation of the Lys6-selective deubiquitinase USP30

Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2017-11, Vol.24 (11), p.920-930
Hauptverfasser: Gersch, Malte, Gladkova, Christina, Schubert, Alexander F, Michel, Martin A, Maslen, Sarah, Komander, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 930
container_issue 11
container_start_page 920
container_title Nature structural & molecular biology
container_volume 24
creator Gersch, Malte
Gladkova, Christina
Schubert, Alexander F
Michel, Martin A
Maslen, Sarah
Komander, David
description Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.
doi_str_mv 10.1038/nsmb.3475
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513705115</galeid><sourcerecordid>A513705115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-829ecd4c34daf0cd01ba297bdb55183be3c312ff863d025bc8b555ce07eecec93</originalsourceid><addsrcrecordid>eNptklFrFDEQxxex2Nr64BeQBV9U2Guy2VySF6EcVQsnirXPIZvM7qXsJm2SLe23N0vrtaclDwkzv_lPZvgXxVuMFhgRfuzi2C5Iw-iL4gDThlZCcPpy-xZkv3gd4yVCNaWMvCr2ay4aWjfioFh9B71RzsaxVM6UAfppUMl6V_quTBso13dxWUUYQCd7A6WBqbXXk03WqQjlxflPgo6KvU4NEd483IfFxZfT36tv1frH17PVybrSS0RTxWsB2jSaNEZ1SBuEW1UL1pqWUsxJC0QTXHcdXxKTf9pqnhNUA2IAGrQgh8Xne92rqR3BaHApqEFeBTuqcCe9snI34-xG9v5GUkYZ4zQLfHgQCP56gpjkaKOGYVAO_BQlFk3NUI05y-j7f9BLPwWXx8vUsqGkJhg_Ur0aQFrX-dxXz6LyhGLCEMV4brt4hsrHwGi1d9DZHN8p-LhTkJkEt6lXU4zy7PzXs6wOPsYA3XYfGMnZHXJ2h5zdkdl3Txe4Jf_aIQOf7oGYU66H8GTq_9T-AHwYwgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964532311</pqid></control><display><type>article</type><title>Mechanism and regulation of the Lys6-selective deubiquitinase USP30</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gersch, Malte ; Gladkova, Christina ; Schubert, Alexander F ; Michel, Martin A ; Maslen, Sarah ; Komander, David</creator><creatorcontrib>Gersch, Malte ; Gladkova, Christina ; Schubert, Alexander F ; Michel, Martin A ; Maslen, Sarah ; Komander, David</creatorcontrib><description>Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.3475</identifier><identifier>PMID: 28945249</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/58 ; 631/45/612/1240 ; 631/45/612/645 ; 631/535/1266 ; 631/80/39 ; Autophagy ; Biochemistry ; Biological Microscopy ; Chains ; Crystal structure ; Deubiquitinating Enzymes - chemistry ; Deubiquitinating Enzymes - metabolism ; Dismantling ; Drug development ; Genetic regulation ; Humans ; Interfaces ; Kinases ; Life Sciences ; Membrane Biology ; Mitochondria ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - metabolism ; Parkin protein ; Phagocytosis ; Protein Binding ; Protein kinase ; Protein Kinases - metabolism ; Protein Structure ; Proteins ; PTEN-induced putative kinase ; Substrate Specificity ; Substrates ; Thiolester Hydrolases - chemistry ; Thiolester Hydrolases - metabolism ; Ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - metabolism ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitin-specific proteinase ; Ubiquitination</subject><ispartof>Nature structural &amp; molecular biology, 2017-11, Vol.24 (11), p.920-930</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-829ecd4c34daf0cd01ba297bdb55183be3c312ff863d025bc8b555ce07eecec93</citedby><cites>FETCH-LOGICAL-c605t-829ecd4c34daf0cd01ba297bdb55183be3c312ff863d025bc8b555ce07eecec93</cites><orcidid>0000-0002-8092-4320 ; 0000-0003-2767-9589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28945249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gersch, Malte</creatorcontrib><creatorcontrib>Gladkova, Christina</creatorcontrib><creatorcontrib>Schubert, Alexander F</creatorcontrib><creatorcontrib>Michel, Martin A</creatorcontrib><creatorcontrib>Maslen, Sarah</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><title>Mechanism and regulation of the Lys6-selective deubiquitinase USP30</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.</description><subject>101/58</subject><subject>631/45/612/1240</subject><subject>631/45/612/645</subject><subject>631/535/1266</subject><subject>631/80/39</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Chains</subject><subject>Crystal structure</subject><subject>Deubiquitinating Enzymes - chemistry</subject><subject>Deubiquitinating Enzymes - metabolism</subject><subject>Dismantling</subject><subject>Drug development</subject><subject>Genetic regulation</subject><subject>Humans</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Parkin protein</subject><subject>Phagocytosis</subject><subject>Protein Binding</subject><subject>Protein kinase</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>PTEN-induced putative kinase</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thiolester Hydrolases - chemistry</subject><subject>Thiolester Hydrolases - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitin-specific proteinase</subject><subject>Ubiquitination</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptklFrFDEQxxex2Nr64BeQBV9U2Guy2VySF6EcVQsnirXPIZvM7qXsJm2SLe23N0vrtaclDwkzv_lPZvgXxVuMFhgRfuzi2C5Iw-iL4gDThlZCcPpy-xZkv3gd4yVCNaWMvCr2ay4aWjfioFh9B71RzsaxVM6UAfppUMl6V_quTBso13dxWUUYQCd7A6WBqbXXk03WqQjlxflPgo6KvU4NEd483IfFxZfT36tv1frH17PVybrSS0RTxWsB2jSaNEZ1SBuEW1UL1pqWUsxJC0QTXHcdXxKTf9pqnhNUA2IAGrQgh8Xne92rqR3BaHApqEFeBTuqcCe9snI34-xG9v5GUkYZ4zQLfHgQCP56gpjkaKOGYVAO_BQlFk3NUI05y-j7f9BLPwWXx8vUsqGkJhg_Ur0aQFrX-dxXz6LyhGLCEMV4brt4hsrHwGi1d9DZHN8p-LhTkJkEt6lXU4zy7PzXs6wOPsYA3XYfGMnZHXJ2h5zdkdl3Txe4Jf_aIQOf7oGYU66H8GTq_9T-AHwYwgA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Gersch, Malte</creator><creator>Gladkova, Christina</creator><creator>Schubert, Alexander F</creator><creator>Michel, Martin A</creator><creator>Maslen, Sarah</creator><creator>Komander, David</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8092-4320</orcidid><orcidid>https://orcid.org/0000-0003-2767-9589</orcidid></search><sort><creationdate>20171101</creationdate><title>Mechanism and regulation of the Lys6-selective deubiquitinase USP30</title><author>Gersch, Malte ; Gladkova, Christina ; Schubert, Alexander F ; Michel, Martin A ; Maslen, Sarah ; Komander, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-829ecd4c34daf0cd01ba297bdb55183be3c312ff863d025bc8b555ce07eecec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>101/58</topic><topic>631/45/612/1240</topic><topic>631/45/612/645</topic><topic>631/535/1266</topic><topic>631/80/39</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Chains</topic><topic>Crystal structure</topic><topic>Deubiquitinating Enzymes - chemistry</topic><topic>Deubiquitinating Enzymes - metabolism</topic><topic>Dismantling</topic><topic>Drug development</topic><topic>Genetic regulation</topic><topic>Humans</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Parkin protein</topic><topic>Phagocytosis</topic><topic>Protein Binding</topic><topic>Protein kinase</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>PTEN-induced putative kinase</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thiolester Hydrolases - chemistry</topic><topic>Thiolester Hydrolases - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitin-specific proteinase</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gersch, Malte</creatorcontrib><creatorcontrib>Gladkova, Christina</creatorcontrib><creatorcontrib>Schubert, Alexander F</creatorcontrib><creatorcontrib>Michel, Martin A</creatorcontrib><creatorcontrib>Maslen, Sarah</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gersch, Malte</au><au>Gladkova, Christina</au><au>Schubert, Alexander F</au><au>Michel, Martin A</au><au>Maslen, Sarah</au><au>Komander, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism and regulation of the Lys6-selective deubiquitinase USP30</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>24</volume><issue>11</issue><spage>920</spage><epage>930</epage><pages>920-930</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28945249</pmid><doi>10.1038/nsmb.3475</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8092-4320</orcidid><orcidid>https://orcid.org/0000-0003-2767-9589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2017-11, Vol.24 (11), p.920-930
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757785
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 101/58
631/45/612/1240
631/45/612/645
631/535/1266
631/80/39
Autophagy
Biochemistry
Biological Microscopy
Chains
Crystal structure
Deubiquitinating Enzymes - chemistry
Deubiquitinating Enzymes - metabolism
Dismantling
Drug development
Genetic regulation
Humans
Interfaces
Kinases
Life Sciences
Membrane Biology
Mitochondria
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - metabolism
Parkin protein
Phagocytosis
Protein Binding
Protein kinase
Protein Kinases - metabolism
Protein Structure
Proteins
PTEN-induced putative kinase
Substrate Specificity
Substrates
Thiolester Hydrolases - chemistry
Thiolester Hydrolases - metabolism
Ubiquitin
Ubiquitin - chemistry
Ubiquitin - metabolism
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
Ubiquitin-specific proteinase
Ubiquitination
title Mechanism and regulation of the Lys6-selective deubiquitinase USP30
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20and%20regulation%20of%20the%20Lys6-selective%20deubiquitinase%20USP30&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Gersch,%20Malte&rft.date=2017-11-01&rft.volume=24&rft.issue=11&rft.spage=920&rft.epage=930&rft.pages=920-930&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.3475&rft_dat=%3Cgale_pubme%3EA513705115%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964532311&rft_id=info:pmid/28945249&rft_galeid=A513705115&rfr_iscdi=true