Mechanism and regulation of the Lys6-selective deubiquitinase USP30

Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2017-11, Vol.24 (11), p.920-930
Hauptverfasser: Gersch, Malte, Gladkova, Christina, Schubert, Alexander F, Michel, Martin A, Maslen, Sarah, Komander, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural and biochemical analyses of human USP30 explain the basis of Lys6-linkage preference and regulation by PINK1 and Parkin, shedding light onto how USP30 can act as a brake on mitophagy. Damaged mitochondria undergo mitophagy, a specialized form of autophagy that is initiated by the protein kinase PINK1 and the ubiquitin E3 ligase Parkin. Ubiquitin-specific protease USP30 antagonizes Parkin-mediated ubiquitination events on mitochondria and is a key negative regulator of mitophagy. Parkin and USP30 both show a preference for assembly or disassembly, respectively, of Lys6-linked polyubiquitin, a chain type that has not been well studied. Here we report crystal structures of human USP30 bound to monoubiquitin and Lys6-linked diubiquitin, which explain how USP30 achieves Lys6-linkage preference through unique ubiquitin binding interfaces. We assess the interplay between USP30, PINK1 and Parkin and show that distally phosphorylated ubiquitin chains impair USP30 activity. Lys6-linkage-specific affimers identify numerous mitochondrial substrates for this modification, and we show that USP30 regulates Lys6-polyubiquitinated TOM20. Our work provides insights into the architecture, activity and regulation of USP30, which will aid drug design against this and related enzymes.
ISSN:1545-9993
1545-9985
DOI:10.1038/nsmb.3475