Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes

Nanoparticles are commonly used in the industry and are present in consumer goods; therefore, evaluation of their potential toxicity is necessary. The aim of the present study was to assess the cytotoxic effects of the nanoparticles of silver (AgNPs) at the concentration of 1.5 mg L −1 and copper (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-01, Vol.25 (1), p.908-915
Hauptverfasser: Ostaszewska, Teresa, Śliwiński, Jerzy, Kamaszewski, Maciej, Sysa, Paweł, Chojnacki, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoparticles are commonly used in the industry and are present in consumer goods; therefore, evaluation of their potential toxicity is necessary. The aim of the present study was to assess the cytotoxic effects of the nanoparticles of silver (AgNPs) at the concentration of 1.5 mg L −1 and copper (CuNPs) at 0.15 mg L −1 on rainbow trout ( Oncorhynchus mykiss ) hepatocytes after 28 days of exposure. Histological analysis revealed dilated sinusoids, shrunken hepatocytes, nuclear necrosis, and increased number of Kupffer cells in the liver of fish exposed to nanoparticles. The lowest hepatocyte proliferation index was observed in fish treated with AgNPs. Ultrastructural studies revealed mitochondrial edema and cristolysis, dilated and loosened endoplasmic reticulum, cytoplasm vacuolation, accumulation of lipid droplets, glycogen depletion, and formation of myelin-like bodies. The results also revealed that the liver of fish exposed to copper nanoparticles showed higher regenerative potential indicated by higher proliferation index, more abundant glycogen, and more numerous Kupffer cells compared to the fish treated with silver nanoparticles.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-017-0494-0