Self-healing catalysis in water
Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (51), p.13380-13384 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13384 |
---|---|
container_issue | 51 |
container_start_page | 13380 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Costentin, Cyrille Nocera, Daniel G. |
description | Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations. |
doi_str_mv | 10.1073/pnas.1711836114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485133</jstor_id><sourcerecordid>26485133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</originalsourceid><addsrcrecordid>eNpdkbtvFDEQxi0EIkegpgJO0NBsMmN7_WiQUMRLikQB1JbXmc35tGcfti8o_z0bbUiAaorvN988PsaeI5wgaHG6T76eoEY0QiHKB2yFYLFT0sJDtgLgujOSyyP2pNYtANjewGN2xI3Rsu9xxV59o2nsNuSnmC7XwTc_XddY1zGtf_lG5Sl7NPqp0rPbesx-fPzw_exzd_7105ez9-dd6IVqnRmtHcAbgdLQMHsrwTUaQhIkgw4EXkplJYQL1SOIMEpujZU6aBysHsQxe7f47g_Dji4CpVb85PYl7ny5dtlH96-S4sZd5ivX615qbWeD14tBri26GmKjsAk5JQrNodBmgd7eTin554Fqc7tYA02TT5QP1aEViiuJ0M_om__QbT6UNP_AceBSGhBczdTpQoWSay003m2M4G4ScjcJufuE5o6Xfx96x_-JZAZeLMC2tlzudSXNrArxG--yk2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024480326</pqid></control><display><type>article</type><title>Self-healing catalysis in water</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Costentin, Cyrille ; Nocera, Daniel G.</creator><creatorcontrib>Costentin, Cyrille ; Nocera, Daniel G. ; Harvard Univ., Cambridge, MA (United States)</creatorcontrib><description>Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1711836114</identifier><identifier>PMID: 28874551</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon dioxide ; Catalysis ; Catalysts ; Cobalt ; cobalt phosphate ; Dissolution ; ENERGY STORAGE ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ions ; Kinetics ; Leaching ; pH effects ; Physical Sciences ; Reaction kinetics ; renewable energy storage ; self-healing catalysis ; SOLAR ENERGY ; Splitting ; Water splitting</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13380-13384</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</citedby><cites>FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</cites><orcidid>0000-0002-7098-3132 ; 0000-0001-5055-320X ; 0000000270983132 ; 000000015055320X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485133$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485133$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28874551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1378779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Costentin, Cyrille</creatorcontrib><creatorcontrib>Nocera, Daniel G.</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><title>Self-healing catalysis in water</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.</description><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>cobalt phosphate</subject><subject>Dissolution</subject><subject>ENERGY STORAGE</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Leaching</subject><subject>pH effects</subject><subject>Physical Sciences</subject><subject>Reaction kinetics</subject><subject>renewable energy storage</subject><subject>self-healing catalysis</subject><subject>SOLAR ENERGY</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkbtvFDEQxi0EIkegpgJO0NBsMmN7_WiQUMRLikQB1JbXmc35tGcfti8o_z0bbUiAaorvN988PsaeI5wgaHG6T76eoEY0QiHKB2yFYLFT0sJDtgLgujOSyyP2pNYtANjewGN2xI3Rsu9xxV59o2nsNuSnmC7XwTc_XddY1zGtf_lG5Sl7NPqp0rPbesx-fPzw_exzd_7105ez9-dd6IVqnRmtHcAbgdLQMHsrwTUaQhIkgw4EXkplJYQL1SOIMEpujZU6aBysHsQxe7f47g_Dji4CpVb85PYl7ny5dtlH96-S4sZd5ivX615qbWeD14tBri26GmKjsAk5JQrNodBmgd7eTin554Fqc7tYA02TT5QP1aEViiuJ0M_om__QbT6UNP_AceBSGhBczdTpQoWSay003m2M4G4ScjcJufuE5o6Xfx96x_-JZAZeLMC2tlzudSXNrArxG--yk2A</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Costentin, Cyrille</creator><creator>Nocera, Daniel G.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7098-3132</orcidid><orcidid>https://orcid.org/0000-0001-5055-320X</orcidid><orcidid>https://orcid.org/0000000270983132</orcidid><orcidid>https://orcid.org/000000015055320X</orcidid></search><sort><creationdate>20171219</creationdate><title>Self-healing catalysis in water</title><author>Costentin, Cyrille ; Nocera, Daniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>cobalt phosphate</topic><topic>Dissolution</topic><topic>ENERGY STORAGE</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Leaching</topic><topic>pH effects</topic><topic>Physical Sciences</topic><topic>Reaction kinetics</topic><topic>renewable energy storage</topic><topic>self-healing catalysis</topic><topic>SOLAR ENERGY</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costentin, Cyrille</creatorcontrib><creatorcontrib>Nocera, Daniel G.</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costentin, Cyrille</au><au>Nocera, Daniel G.</au><aucorp>Harvard Univ., Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healing catalysis in water</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>114</volume><issue>51</issue><spage>13380</spage><epage>13384</epage><pages>13380-13384</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28874551</pmid><doi>10.1073/pnas.1711836114</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7098-3132</orcidid><orcidid>https://orcid.org/0000-0001-5055-320X</orcidid><orcidid>https://orcid.org/0000000270983132</orcidid><orcidid>https://orcid.org/000000015055320X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13380-13384 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754779 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Carbon dioxide Catalysis Catalysts Cobalt cobalt phosphate Dissolution ENERGY STORAGE INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ions Kinetics Leaching pH effects Physical Sciences Reaction kinetics renewable energy storage self-healing catalysis SOLAR ENERGY Splitting Water splitting |
title | Self-healing catalysis in water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healing%20catalysis%20in%20water&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Costentin,%20Cyrille&rft.aucorp=Harvard%20Univ.,%20Cambridge,%20MA%20(United%20States)&rft.date=2017-12-19&rft.volume=114&rft.issue=51&rft.spage=13380&rft.epage=13384&rft.pages=13380-13384&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1711836114&rft_dat=%3Cjstor_pubme%3E26485133%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024480326&rft_id=info:pmid/28874551&rft_jstor_id=26485133&rfr_iscdi=true |