Self-healing catalysis in water

Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (51), p.13380-13384
Hauptverfasser: Costentin, Cyrille, Nocera, Daniel G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13384
container_issue 51
container_start_page 13380
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Costentin, Cyrille
Nocera, Daniel G.
description Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.
doi_str_mv 10.1073/pnas.1711836114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485133</jstor_id><sourcerecordid>26485133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</originalsourceid><addsrcrecordid>eNpdkbtvFDEQxi0EIkegpgJO0NBsMmN7_WiQUMRLikQB1JbXmc35tGcfti8o_z0bbUiAaorvN988PsaeI5wgaHG6T76eoEY0QiHKB2yFYLFT0sJDtgLgujOSyyP2pNYtANjewGN2xI3Rsu9xxV59o2nsNuSnmC7XwTc_XddY1zGtf_lG5Sl7NPqp0rPbesx-fPzw_exzd_7105ez9-dd6IVqnRmtHcAbgdLQMHsrwTUaQhIkgw4EXkplJYQL1SOIMEpujZU6aBysHsQxe7f47g_Dji4CpVb85PYl7ny5dtlH96-S4sZd5ivX615qbWeD14tBri26GmKjsAk5JQrNodBmgd7eTin554Fqc7tYA02TT5QP1aEViiuJ0M_om__QbT6UNP_AceBSGhBczdTpQoWSay003m2M4G4ScjcJufuE5o6Xfx96x_-JZAZeLMC2tlzudSXNrArxG--yk2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024480326</pqid></control><display><type>article</type><title>Self-healing catalysis in water</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Costentin, Cyrille ; Nocera, Daniel G.</creator><creatorcontrib>Costentin, Cyrille ; Nocera, Daniel G. ; Harvard Univ., Cambridge, MA (United States)</creatorcontrib><description>Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1711836114</identifier><identifier>PMID: 28874551</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon dioxide ; Catalysis ; Catalysts ; Cobalt ; cobalt phosphate ; Dissolution ; ENERGY STORAGE ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ions ; Kinetics ; Leaching ; pH effects ; Physical Sciences ; Reaction kinetics ; renewable energy storage ; self-healing catalysis ; SOLAR ENERGY ; Splitting ; Water splitting</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13380-13384</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</citedby><cites>FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</cites><orcidid>0000-0002-7098-3132 ; 0000-0001-5055-320X ; 0000000270983132 ; 000000015055320X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485133$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485133$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28874551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1378779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Costentin, Cyrille</creatorcontrib><creatorcontrib>Nocera, Daniel G.</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><title>Self-healing catalysis in water</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.</description><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>cobalt phosphate</subject><subject>Dissolution</subject><subject>ENERGY STORAGE</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Leaching</subject><subject>pH effects</subject><subject>Physical Sciences</subject><subject>Reaction kinetics</subject><subject>renewable energy storage</subject><subject>self-healing catalysis</subject><subject>SOLAR ENERGY</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkbtvFDEQxi0EIkegpgJO0NBsMmN7_WiQUMRLikQB1JbXmc35tGcfti8o_z0bbUiAaorvN988PsaeI5wgaHG6T76eoEY0QiHKB2yFYLFT0sJDtgLgujOSyyP2pNYtANjewGN2xI3Rsu9xxV59o2nsNuSnmC7XwTc_XddY1zGtf_lG5Sl7NPqp0rPbesx-fPzw_exzd_7105ez9-dd6IVqnRmtHcAbgdLQMHsrwTUaQhIkgw4EXkplJYQL1SOIMEpujZU6aBysHsQxe7f47g_Dji4CpVb85PYl7ny5dtlH96-S4sZd5ivX615qbWeD14tBri26GmKjsAk5JQrNodBmgd7eTin554Fqc7tYA02TT5QP1aEViiuJ0M_om__QbT6UNP_AceBSGhBczdTpQoWSay003m2M4G4ScjcJufuE5o6Xfx96x_-JZAZeLMC2tlzudSXNrArxG--yk2A</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Costentin, Cyrille</creator><creator>Nocera, Daniel G.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7098-3132</orcidid><orcidid>https://orcid.org/0000-0001-5055-320X</orcidid><orcidid>https://orcid.org/0000000270983132</orcidid><orcidid>https://orcid.org/000000015055320X</orcidid></search><sort><creationdate>20171219</creationdate><title>Self-healing catalysis in water</title><author>Costentin, Cyrille ; Nocera, Daniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-8f99b0a83148eb745632718e1e3e4c7ce0a446940cd65103cf4298947c71b97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>cobalt phosphate</topic><topic>Dissolution</topic><topic>ENERGY STORAGE</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Leaching</topic><topic>pH effects</topic><topic>Physical Sciences</topic><topic>Reaction kinetics</topic><topic>renewable energy storage</topic><topic>self-healing catalysis</topic><topic>SOLAR ENERGY</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costentin, Cyrille</creatorcontrib><creatorcontrib>Nocera, Daniel G.</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costentin, Cyrille</au><au>Nocera, Daniel G.</au><aucorp>Harvard Univ., Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-healing catalysis in water</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>114</volume><issue>51</issue><spage>13380</spage><epage>13384</epage><pages>13380-13384</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28874551</pmid><doi>10.1073/pnas.1711836114</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7098-3132</orcidid><orcidid>https://orcid.org/0000-0001-5055-320X</orcidid><orcidid>https://orcid.org/0000000270983132</orcidid><orcidid>https://orcid.org/000000015055320X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13380-13384
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754779
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Carbon dioxide
Catalysis
Catalysts
Cobalt
cobalt phosphate
Dissolution
ENERGY STORAGE
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ions
Kinetics
Leaching
pH effects
Physical Sciences
Reaction kinetics
renewable energy storage
self-healing catalysis
SOLAR ENERGY
Splitting
Water splitting
title Self-healing catalysis in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-healing%20catalysis%20in%20water&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Costentin,%20Cyrille&rft.aucorp=Harvard%20Univ.,%20Cambridge,%20MA%20(United%20States)&rft.date=2017-12-19&rft.volume=114&rft.issue=51&rft.spage=13380&rft.epage=13384&rft.pages=13380-13384&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1711836114&rft_dat=%3Cjstor_pubme%3E26485133%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024480326&rft_id=info:pmid/28874551&rft_jstor_id=26485133&rfr_iscdi=true