Self-healing catalysis in water
Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (51), p.13380-13384 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Principles for designing self-healing water-splitting catalysts are presented together with a formal kinetics model to account for the key chemical steps needed for self-healing. Self-healing may be realized if the catalysts are able to self-assemble at applied potentials less than that needed for catalyst turnover. Solution pH provides a convenient handle for controlling the potential of these two processes, as demonstrated for the cobalt phosphate (CoPi) water-splitting catalyst. For Co2+ ion that appears in solution due to leaching from the catalyst during turnover, a quantitative description for the kinetics of the redeposition of the ion during the self-healing process has been derived. The model reveals that OER activity of CoPi occurs with negligible film dissolution in neutral pH for typical cell geometries and buffer concentrations. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1711836114 |