Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties

Successful dental and orthopedic implant outcomes are determined by the degree of osseointegration. Over the last 60 years, endosseous implants have evolved to stimulate osteogenesis without the need for exogenous biologics such as bone morphogenetic proteins. An understanding of the interaction bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2017-12, Vol.23 (23-24), p.1479-1489
Hauptverfasser: Boyan, Barbara D., Lotz, Ethan M., Schwartz, Zvi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Successful dental and orthopedic implant outcomes are determined by the degree of osseointegration. Over the last 60 years, endosseous implants have evolved to stimulate osteogenesis without the need for exogenous biologics such as bone morphogenetic proteins. An understanding of the interaction between cells and the physical characteristics of their environments has led to development of bioactive implants. Implant surfaces that mimic the inherent chemistry, topography, and wettability of native bone have shown to provide cells in the osteoblast lineage with the structural cues to promote tissue regeneration and net new bone formation. Studies show that attachment, proliferation, differentiation, and local factor production are sensitive to these implant surface characteristics. This review focuses on how surface properties, including chemistry, topography, and hydrophilicity, modulate protein adsorption, cell behavior, biological reactions, and signaling pathways in peri-implant bone tissue, allowing the development of true biomimetics that promote osseointegration by providing an environment suitable for osteogenesis.
ISSN:1937-3341
1937-335X
DOI:10.1089/ten.tea.2017.0048