Bone mineral density measurements in vertebral specimens and phantoms using dual-layer spectral computed tomography

To assess whether phantomless calcium-hydroxyapatite (HA) specific bone mineral density (BMD) measurements with dual-layer spectral computed tomography are accurate in phantoms and vertebral specimens. Ex-vivo human vertebrae (n = 13) and a phantom containing different known HA concentrations were p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-12, Vol.7 (1), p.17519-10, Article 17519
Hauptverfasser: Mei, Kai, Schwaiger, Benedikt J., Kopp, Felix K., Ehn, Sebastian, Gersing, Alexandra S., Kirschke, Jan S., Muenzel, Daniela, Fingerle, Alexander A., Rummeny, Ernst J., Pfeiffer, Franz, Baum, Thomas, Noël, Peter B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To assess whether phantomless calcium-hydroxyapatite (HA) specific bone mineral density (BMD) measurements with dual-layer spectral computed tomography are accurate in phantoms and vertebral specimens. Ex-vivo human vertebrae (n = 13) and a phantom containing different known HA concentrations were placed in a semi-anthropomorphic abdomen phantom with different extension rings simulating different degrees of obesity. Phantomless dual-layer spectral CT was performed at different tube current settings (500, 250, 125 and 50 mAs). HA-specific BMD was derived from spectral-based virtual monoenergetic images at 50 keV and 200 keV. Values were compared to the HA concentrations of the phantoms and conventional qCT measurements using a reference phantom, respectively. Above 125 mAs, errors for phantom measurements ranged between −1.3% to 4.8%, based on spectral information. In vertebral specimens, high correlations were found between BMD values assessed with spectral CT and conventional qCT (r ranging between 0.96 and 0.99; p  0.05 for all). These results suggest a high validity of HA-specific BMD measurements based on dual-layer spectral CT examinations in setups simulating different degrees of obesity without the need for a reference phantom, thus demonstrating their feasibility in clinical routine.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-17855-4