Wastewater influences nitrogen dynamics in a coastal catchment during a prolonged drought

Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography 2017-11, Vol.62 (S1), p.S239-S257
Hauptverfasser: Bruesewitz, Denise A., Hoellein, Timothy J., Mooney, Rae F., Gardner, Wayne S., Buskey, Edward J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of south Texas. We measured N export from both rivers to the estuary over 2 yr that encompass a severe drought, along with detailed mechanisms of N cycling in river, tidal river, and two estuary sites during prolonged drought. WWTP nutrient inputs stimulated uptake of N, but denitrification resulting in permanent N removal accounted for only a small proportion of total uptake. During drought periods, WWTP N was the primary source of exported N to the estuary, minimizing the influence of episodic storm-derived nutrients from the WWTP-influenced river to the estuary. In the site without WWTP influence, the river exported very little N during drought, so storm-derived nutrient pulses were important for delivering N loads to the estuary. Overall, N is processed from river to estuary, but sustained WWTP-N loads and periodic floods alter the timing of N delivery and N processing. Research that incorporates empirical measurements of N fluxes from river to estuary can inform management needs in the face of multiple anthropogenic stressors such as demand for freshwater and eutrophication.
ISSN:0024-3590
1939-5590
DOI:10.1002/lno.10576