Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2

Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. In previous work, we used cryptochrome 2 (CRY2) and CIB1, Arabidopsis proteins that interact upon light illumination, to regulate transcription with light in yeast. While adopt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2017-11, Vol.45 (20), p.e167-e167
Hauptverfasser: Pathak, Gopal P, Spiltoir, Jessica I, Höglund, Camilla, Polstein, Lauren R, Heine-Koskinen, Sari, Gersbach, Charles A, Rossi, Jari, Tucker, Chandra L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. In previous work, we used cryptochrome 2 (CRY2) and CIB1, Arabidopsis proteins that interact upon light illumination, to regulate transcription with light in yeast. While adopting this approach to regulate transcription in mammalian cells, we observed light-dependent redistribution and clearing of CRY2-tethered proteins within the nucleus. The nuclear clearing phenotype was dependent on the presence of a dimerization domain contained within the CRY2-fused transcriptional activators. We used this knowledge to develop two different approaches to regulate cellular protein levels with light: a system using CRY2 and CIB1 to induce protein expression with light through stimulation of transcription, and a system using CRY2 and a LOV-fused degron to simultaneously block transcription and deplete protein levels with light. These tools will allow precise, bi-directional control of gene expression in a variety of cells and model systems.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkx260