Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain

Rice ( L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2017-11, Vol.18 (11), p.2458
Hauptverfasser: Jo, Yeong-Min, Cho, Kyoungwon, Lee, Hye-Jung, Lim, Sun-Hyung, Kim, Jin Sun, Kim, Young-Mi, Lee, Jong-Yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice ( L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes and , which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific promoter and were expressed in the high-amylose Korean rice cultivar Koami ( L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T₃ generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms18112458