De novo transcriptome assembly of Zanthoxylum bungeanum using Illumina sequencing for evolutionary analysis and simple sequence repeat marker development

Zanthoxylum , an ancient economic crop in Asia, has a satisfying aromatic taste and immense medicinal values. A lack of genomic information and genetic markers has limited the evolutionary analysis and genetic improvement of Zanthoxylum species and their close relatives. To better understand the evo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-12, Vol.7 (1), p.16754-11, Article 16754
Hauptverfasser: Feng, Shijing, Zhao, Lili, Liu, Zhenshan, Liu, Yulin, Yang, Tuxi, Wei, Anzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zanthoxylum , an ancient economic crop in Asia, has a satisfying aromatic taste and immense medicinal values. A lack of genomic information and genetic markers has limited the evolutionary analysis and genetic improvement of Zanthoxylum species and their close relatives. To better understand the evolution, domestication, and divergence of Zanthoxylum , we present a de novo transcriptome analysis of an elite cultivar of Z. bungeanum using Illumina sequencing; we then developed simple sequence repeat markers for identification of Zanthoxylum . In total, we predicted 45,057 unigenes and 22,212 protein coding sequences, approximately 90% of which showed significant similarities to known proteins in databases. Phylogenetic analysis indicated that Zanthoxylum is relatively recent and estimated to have diverged from Citrus ca . 36.5–37.7 million years ago. We also detected a whole-genome duplication event in Zanthoxylum that occurred 14 million years ago. We found no protein coding sequences that were significantly under positive selection by Ka / Ks . Simple sequence repeat analysis divided 31 Zanthoxylum cultivars and landraces into three major groups. This Zanthoxylum reference transcriptome provides crucial information for the evolutionary study of the Zanthoxylum genus and the Rutaceae family, and facilitates the establishment of more effective Zanthoxylum breeding programs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-15911-7