Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases

Purpose Three-dimensional (3D) printing for preoperative planning has been intensively developed in the recent years. However, the implementation of these solutions in hospitals is still difficult due to high costs, extremely expensive industrial-grade printers, and software that is difficult to obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2017-12, Vol.12 (12), p.2047-2054
Hauptverfasser: Witowski, Jan Sylwester, Pędziwiatr, Michał, Major, Piotr, Budzyński, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Three-dimensional (3D) printing for preoperative planning has been intensively developed in the recent years. However, the implementation of these solutions in hospitals is still difficult due to high costs, extremely expensive industrial-grade printers, and software that is difficult to obtain and learn along with a lack of a defined process. This paper presents a cost-effective technique of preparing 3D-printed liver models that preserves the shape and all of the structures, including the vessels and the tumor, which in the present case is colorectal liver metastasis. Methods The patient’s computed tomography scans were used for the separation and visualization of virtual 3D anatomical structures. Those elements were transformed into stereolithographic files and subsequently printed on a desktop 3D printer. The multipart structure was assembled and filled with silicone. The patient underwent subsequent laparoscopic right hemihepatectomy. The entire process is described step-by-step, and only free-to-use and mostly open-source software was used. Results As a result, a transparent, full-sized liver model with visible vessels and colorectal metastasis was created for under $150, which—taking into account 3D printer prices—is much cheaper than models presented in previous research papers. Conclusions The increased accessibility of 3D models for physicians before complex laparoscopic surgical procedures such as hepatic resections could lead to beneficial breakthroughs in these sophisticated surgeries, as many reports show that these models reduce operative time and improve short term outcomes.
ISSN:1861-6410
1861-6429
DOI:10.1007/s11548-017-1527-3