Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour‐bearing mice
Background Cancer cachexia is largely irreversible, at least via nutritional means, and responsible for 20–40% of cancer‐related deaths. Therefore, preventive measures are of primary importance; however, little is known about muscle perturbations prior to onset of cachexia. Cancer cachexia is associ...
Gespeichert in:
Veröffentlicht in: | Journal of cachexia, sarcopenia and muscle sarcopenia and muscle, 2017-12, Vol.8 (6), p.926-938 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Cancer cachexia is largely irreversible, at least via nutritional means, and responsible for 20–40% of cancer‐related deaths. Therefore, preventive measures are of primary importance; however, little is known about muscle perturbations prior to onset of cachexia. Cancer cachexia is associated with mitochondrial degeneration; yet, it remains to be determined if mitochondrial degeneration precedes muscle wasting in cancer cachexia. Therefore, our purpose was to determine if mitochondrial degeneration precedes cancer‐induced muscle wasting in tumour‐bearing mice.
Methods
First, weight‐stable (MinStable) and cachectic (MinCC) ApcMin/+ mice were compared with C57Bl6/J controls for mRNA contents of mitochondrial quality regulators in quadriceps muscle. Next, Lewis lung carcinoma (LLC) cells or PBS (control) were injected into the hind flank of C57Bl6/J mice at 8 week age, and tumour allowed to develop for 1, 2, 3, or 4 weeks to examine time course of cachectic development. Succinate dehydrogenase stain was used to measure oxidative phenotype in tibialis anterior muscle. Mitochondrial quality and function were assessed using the reporter MitoTimer by transfection to flexor digitorum brevis and mitochondrial function/ROS emission in permeabilized adult myofibres from plantaris. RT‐qPCR and immunoblot measured the expression of mitochondrial quality control and antioxidant proteins. Data were analysed by one‐way ANOVA with Student–Newman–Kuels post hoc test.
Results
MinStable mice displayed ~50% lower Pgc‐1α, Pparα, and Mfn2 compared with C57Bl6/J controls, whereas MinCC exhibited 10‐fold greater Bnip3 content compared with C57Bl6/J controls. In LLC, cachectic muscle loss was evident only at 4 weeks post‐tumour implantation. Oxidative capacity and mitochondrial content decreased by ~40% 4 weeks post‐tumour implantation. Mitochondrial function decreased by ~25% by 3 weeks after tumour implantation. Mitochondrial degeneration was evident by 2 week LLC compared with PBS control, indicated by MitoTimer red/green ratio and number of pure red puncta. Mitochondrial ROS production was elevated by ~50 to ~100% when compared with PBS at 1–3 weeks post‐tumour implantation. Mitochondrial quality control was dysregulated throughout the progression of cancer cachexia in tumour‐bearing mice. In contrast, antioxidant proteins were not altered in cachectic muscle wasting.
Conclusions
Functional mitochondrial degeneration is evident in LLC tumour‐bearing mice prior to mus |
---|---|
ISSN: | 2190-5991 2190-6009 |
DOI: | 10.1002/jcsm.12232 |