Femtosecond to picosecond transient effects in WSe2 observed by pump-probe angle-resolved photoemission spectroscopy

Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-11, Vol.7 (1)
Hauptverfasser: Liu, Ro-Ya, Ogawa, Yu, Chen, Peng, Ozawa, Kenichi, Suzuki, Takeshi, Okada, Masaru, Someya, Takashi, Ishida, Yukiaki, Okazaki, Kozo, Shin, Shik, Chiang, Tai-Chang, Matsuda, Iwao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers – effects operating at vastly different time domains.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-16076-z